likes
comments
collection
share

高级前端二面高频面试题合集

作者站长头像
站长
· 阅读数 58

说一下原型链和原型链的继承吧

  • 所有普通的 [[Prototype]] 链最终都会指向内置的 Object.prototype,其包含了 JavaScript 中许多通用的功能
  • 为什么能创建 “类”,借助一种特殊的属性:所有的函数默认都会拥有一个名为 prototype 的共有且不可枚举的属性,它会指向另外一个对象,这个对象通常被称为函数的原型
function Person(name) {
  this.name = name;
}

Person.prototype.constructor = Person
  • 在发生 new 构造函数调用时,会将创建的新对象的 [[Prototype]] 链接到 Person.prototype 指向的对象,这个机制就被称为原型链继承
  • 方法定义在原型上,属性定义在构造函数上
  • 首先要说一下 JS 原型和实例的关系:每个构造函数 (constructor)都有一个原型对象(prototype),这个原型对象包含一个指向此构造函数的指针属性,通过 new 进行构造函数调用生成的实例,此实例包含一个指向原型对象的指针,也就是通过 [[Prototype]] 链接到了这个原型对象
  • 然后说一下 JS 中属性的查找:当我们试图引用实例对象的某个属性时,是按照这样的方式去查找的,首先查找实例对象上是否有这个属性,如果没有找到,就去构造这个实例对象的构造函数的 prototype 所指向的对象上去查找,如果还找不到,就从这个 prototype 对象所指向的构造函数的 prototype 原型对象上去查找
  • 什么是原型链:这样逐级查找形似一个链条,且通过 [[Prototype]] 属性链接,所以被称为原型链
  • 什么是原型链继承,类比类的继承:当有两个构造函数 A 和 B,将一个构造函数 A 的原型对象的,通过其 [[Prototype]] 属性链接到另外一个 B 构造函数的原型对象时,这个过程被称之为原型继承。

标准答案更正确的解释

什么是原型链?

当对象查找一个属性的时候,如果没有在自身找到,那么就会查找自身的原型,如果原型还没有找到,那么会继续查找原型的原型,直到找到 Object.prototype 的原型时,此时原型为 null,查找停止。这种通过 通过原型链接的逐级向上的查找链被称为原型链

什么是原型继承?

一个对象可以使用另外一个对象的属性或者方法,就称之为继承。具体是通过将这个对象的原型设置为另外一个对象,这样根据原型链的规则,如果查找一个对象属性且在自身不存在时,就会查找另外一个对象,相当于一个对象可以使用另外一个对象的属性和方法了。

0.1 + 0.2 === 0.3 嘛?为什么?

JavaScript 使用 Number 类型来表示数字(整数或浮点数),遵循 IEEE 754 标准,通过 64 位来表示一个数字(1 + 11 + 52)

  • 1 符号位,0 表示正数,1 表示负数 s
  • 11 指数位(e)
  • 52 尾数,小数部分(即有效数字)

最大安全数字:Number.MAX_SAFE_INTEGER = Math.pow(2, 53) - 1,转换成整数就是 16 位,所以 0.1 === 0.1,是因为通过 toPrecision(16) 去有效位之后,两者是相等的。

在两数相加时,会先转换成二进制,0.1 和 0.2 转换成二进制的时候尾数会发生无限循环,然后进行对阶运算,JS 引擎对二进制进行截断,所以造成精度丢失。

所以总结:精度丢失可能出现在进制转换和对阶运算中

DNS完整的查询过程

DNS服务器解析域名的过程:

  • 首先会在浏览器的缓存中查找对应的IP地址,如果查找到直接返回,若找不到继续下一步
  • 将请求发送给本地DNS服务器,在本地域名服务器缓存中查询,如果查找到,就直接将查找结果返回,若找不到继续下一步
  • 本地DNS服务器向根域名服务器发送请求,根域名服务器会返回一个所查询域的顶级域名服务器地址
  • 本地DNS服务器向顶级域名服务器发送请求,接受请求的服务器查询自己的缓存,如果有记录,就返回查询结果,如果没有就返回相关的下一级的权威域名服务器的地址
  • 本地DNS服务器向权威域名服务器发送请求,域名服务器返回对应的结果
  • 本地DNS服务器将返回结果保存在缓存中,便于下次使用
  • 本地DNS服务器将返回结果返回给浏览器

比如要查询 IP 地址,首先会在浏览器的缓存中查找是否有该域名的缓存,如果不存在就将请求发送到本地的 DNS 服务器中,本地DNS服务器会判断是否存在该域名的缓存,如果不存在,则向根域名服务器发送一个请求,根域名服务器返回负责 .com 的顶级域名服务器的 IP 地址的列表。然后本地 DNS 服务器再向其中一个负责 .com 的顶级域名服务器发送一个请求,负责 .com 的顶级域名服务器返回负责 .baidu 的权威域名服务器的 IP 地址列表。然后本地 DNS 服务器再向其中一个权威域名服务器发送一个请求,最后权威域名服务器返回一个对应的主机名的 IP 地址列表。

setTimeout 模拟 setInterval

描述:使用setTimeout模拟实现setInterval的功能。

实现

const mySetInterval(fn, time) {
    let timer = null;
    const interval = () => {
        timer = setTimeout(() => {
            fn();  // time 时间之后会执行真正的函数fn
            interval();  // 同时再次调用interval本身
        }, time)
    }
    interval();  // 开始执行
    // 返回用于关闭定时器的函数
    return () => clearTimeout(timer);
}

// 测试
const cancel = mySetInterval(() => console.log(1), 400);
setTimeout(() => {
    cancel();
}, 1000);  
// 打印两次1

对keep-alive的理解

HTTP1.0 中默认是在每次请求/应答,客户端和服务器都要新建一个连接,完成之后立即断开连接,这就是短连接。当使用Keep-Alive模式时,Keep-Alive功能使客户端到服务器端的连接持续有效,当出现对服务器的后继请求时,Keep-Alive功能避免了建立或者重新建立连接,这就是长连接。其使用方法如下:

  • HTTP1.0版本是默认没有Keep-alive的(也就是默认会发送keep-alive),所以要想连接得到保持,必须手动配置发送Connection: keep-alive字段。若想断开keep-alive连接,需发送Connection:close字段;
  • HTTP1.1规定了默认保持长连接,数据传输完成了保持TCP连接不断开,等待在同域名下继续用这个通道传输数据。如果需要关闭,需要客户端发送Connection:close首部字段。

Keep-Alive的建立过程

  • 客户端向服务器在发送请求报文同时在首部添加发送Connection字段
  • 服务器收到请求并处理 Connection字段
  • 服务器回送Connection:Keep-Alive字段给客户端
  • 客户端接收到Connection字段
  • Keep-Alive连接建立成功

服务端自动断开过程(也就是没有keep-alive)

  • 客户端向服务器只是发送内容报文(不包含Connection字段)
  • 服务器收到请求并处理
  • 服务器返回客户端请求的资源并关闭连接
  • 客户端接收资源,发现没有Connection字段,断开连接

客户端请求断开连接过程

  • 客户端向服务器发送Connection:close字段
  • 服务器收到请求并处理connection字段
  • 服务器回送响应资源并断开连接
  • 客户端接收资源并断开连接

开启Keep-Alive的优点:

  • 较少的CPU和内存的使⽤(由于同时打开的连接的减少了);
  • 允许请求和应答的HTTP管线化;
  • 降低拥塞控制 (TCP连接减少了);
  • 减少了后续请求的延迟(⽆需再进⾏握⼿);
  • 报告错误⽆需关闭TCP连;

开启Keep-Alive的缺点

  • 长时间的Tcp连接容易导致系统资源无效占用,浪费系统资源。

line-height 的理解及其赋值方式

(1)line-height的概念:

  • line-height 指一行文本的高度,包含了字间距,实际上是下一行基线到上一行基线距离;
  • 如果一个标签没有定义 height 属性,那么其最终表现的高度由 line-height 决定;
  • 一个容器没有设置高度,那么撑开容器高度的是 line-height,而不是容器内的文本内容;
  • 把 line-height 值设置为 height 一样大小的值可以实现单行文字的垂直居中;
  • line-height 和 height 都能撑开一个高度;

(2)line-height 的赋值方式:

  • 带单位:px 是固定值,而 em 会参考父元素 font-size 值计算自身的行高
  • 纯数字:会把比例传递给后代。例如,父级行高为 1.5,子元素字体为 18px,则子元素行高为 1.5 * 18 = 27px
  • 百分比:将计算后的值传递给后代

说一下你对盒模型的理解?

CSS3中的盒模型有以下两种:标准盒模型、IE盒模型
盒模型都是由四个部分组成的,分别是margin、border、padding和content
标准盒模型和IE盒模型的区别在于设置width和height时, 所对应的范围不同
1、标准盒模型的width和height属性的范围只包含了content
2、IE盒模型的width和height属性的范围包含了border、padding和content
可以通过修改元素的box-sizing属性来改变元素的盒模型;
1、box-sizing:content-box表示标准盒模型(默认值)
2、box-sizing:border-box表示IE盒模型(怪异盒模型)

CSS 优化和提高性能的方法有哪些?

加载性能:

(1)css压缩:将写好的css进行打包压缩,可以减小文件体积。

(2)css单一样式:当需要下边距和左边距的时候,很多时候会选择使用 margin:top 0 bottom 0;但margin-bottom:bottom;margin-left:left;执行效率会更高。

(3)减少使用@import,建议使用link,因为后者在页面加载时一起加载,前者是等待页面加载完成之后再进行加载。

选择器性能:

(1)关键选择器(key selector)。选择器的最后面的部分为关键选择器(即用来匹配目标元素的部分)。CSS选择符是从右到左进行匹配的。当使用后代选择器的时候,浏览器会遍历所有子元素来确定是否是指定的元素等等;

(2)如果规则拥有ID选择器作为其关键选择器,则不要为规则增加标签。过滤掉无关的规则(这样样式系统就不会浪费时间去匹配它们了)。

(3)避免使用通配规则,如*{}计算次数惊人,只对需要用到的元素进行选择。

(4)尽量少的去对标签进行选择,而是用class。

(5)尽量少的去使用后代选择器,降低选择器的权重值。后代选择器的开销是最高的,尽量将选择器的深度降到最低,最高不要超过三层,更多的使用类来关联每一个标签元素。

(6)了解哪些属性是可以通过继承而来的,然后避免对这些属性重复指定规则。

渲染性能:

(1)慎重使用高性能属性:浮动、定位。

(2)尽量减少页面重排、重绘。

(3)去除空规则:{}。空规则的产生原因一般来说是为了预留样式。去除这些空规则无疑能减少css文档体积。

(4)属性值为0时,不加单位。

(5)属性值为浮动小数0.**,可以省略小数点之前的0。

(6)标准化各种浏览器前缀:带浏览器前缀的在前。标准属性在后。

(7)不使用@import前缀,它会影响css的加载速度。

(8)选择器优化嵌套,尽量避免层级过深。

(9)css雪碧图,同一页面相近部分的小图标,方便使用,减少页面的请求次数,但是同时图片本身会变大,使用时,优劣考虑清楚,再使用。

(10)正确使用display的属性,由于display的作用,某些样式组合会无效,徒增样式体积的同时也影响解析性能。

(11)不滥用web字体。对于中文网站来说WebFonts可能很陌生,国外却很流行。web fonts通常体积庞大,而且一些浏览器在下载web fonts时会阻塞页面渲染损伤性能。

可维护性、健壮性:

(1)将具有相同属性的样式抽离出来,整合并通过class在页面中进行使用,提高css的可维护性。

(2)样式与内容分离:将css代码定义到外部css中。

V8的垃圾回收机制是怎样的

V8 实现了准确式 GC,GC 算法采用了分代式垃圾回收机制。因此,V8 将内存(堆)分为新生代和老生代两部分。

(1)新生代算法

新生代中的对象一般存活时间较短,使用 Scavenge GC 算法。

在新生代空间中,内存空间分为两部分,分别为 From 空间和 To 空间。在这两个空间中,必定有一个空间是使用的,另一个空间是空闲的。新分配的对象会被放入 From 空间中,当 From 空间被占满时,新生代 GC 就会启动了。算法会检查 From 空间中存活的对象并复制到 To 空间中,如果有失活的对象就会销毁。当复制完成后将 From 空间和 To 空间互换,这样 GC 就结束了。

(2)老生代算法

老生代中的对象一般存活时间较长且数量也多,使用了两个算法,分别是标记清除算法和标记压缩算法。

先来说下什么情况下对象会出现在老生代空间中:

  • 新生代中的对象是否已经经历过一次 Scavenge 算法,如果经历过的话,会将对象从新生代空间移到老生代空间中。
  • To 空间的对象占比大小超过 25 %。在这种情况下,为了不影响到内存分配,会将对象从新生代空间移到老生代空间中。

老生代中的空间很复杂,有如下几个空间

enum AllocationSpace {
  // TODO(v8:7464): Actually map this space's memory as read-only.
  RO_SPACE,    // 不变的对象空间
  NEW_SPACE,   // 新生代用于 GC 复制算法的空间
  OLD_SPACE,   // 老生代常驻对象空间
  CODE_SPACE,  // 老生代代码对象空间
  MAP_SPACE,   // 老生代 map 对象
  LO_SPACE,    // 老生代大空间对象
  NEW_LO_SPACE,  // 新生代大空间对象
  FIRST_SPACE = RO_SPACE,
  LAST_SPACE = NEW_LO_SPACE,
  FIRST_GROWABLE_PAGED_SPACE = OLD_SPACE,
  LAST_GROWABLE_PAGED_SPACE = MAP_SPACE
};

在老生代中,以下情况会先启动标记清除算法:

  • 某一个空间没有分块的时候
  • 空间中被对象超过一定限制
  • 空间不能保证新生代中的对象移动到老生代中

在这个阶段中,会遍历堆中所有的对象,然后标记活的对象,在标记完成后,销毁所有没有被标记的对象。在标记大型对内存时,可能需要几百毫秒才能完成一次标记。这就会导致一些性能上的问题。为了解决这个问题,2011 年,V8 从 stop-the-world 标记切换到增量标志。在增量标记期间,GC 将标记工作分解为更小的模块,可以让 JS 应用逻辑在模块间隙执行一会,从而不至于让应用出现停顿情况。但在 2018 年,GC 技术又有了一个重大突破,这项技术名为并发标记。该技术可以让 GC 扫描和标记对象时,同时允许 JS 运行。

清除对象后会造成堆内存出现碎片的情况,当碎片超过一定限制后会启动压缩算法。在压缩过程中,将活的对象向一端移动,直到所有对象都移动完成然后清理掉不需要的内存。

Promise.resolve

Promise.resolve = function(value) {
    // 1.如果 value 参数是一个 Promise 对象,则原封不动返回该对象
    if(value instanceof Promise) return value;
    // 2.如果 value 参数是一个具有 then 方法的对象,则将这个对象转为 Promise 对象,并立即执行它的then方法
    if(typeof value === "object" && 'then' in value) {
        return new Promise((resolve, reject) => {
           value.then(resolve, reject);
        });
    }
    // 3.否则返回一个新的 Promise 对象,状态为 fulfilled
    return new Promise(resolve => resolve(value));
}

对JSON的理解

JSON 是一种基于文本的轻量级的数据交换格式。它可以被任何的编程语言读取和作为数据格式来传递。

在项目开发中,使用 JSON 作为前后端数据交换的方式。在前端通过将一个符合 JSON 格式的数据结构序列化为JSON 字符串,然后将它传递到后端,后端通过 JSON 格式的字符串解析后生成对应的数据结构,以此来实现前后端数据的一个传递。

因为 JSON 的语法是基于 js 的,因此很容易将 JSON 和 js 中的对象弄混,但是应该注意的是 JSON 和 js 中的对象不是一回事,JSON 中对象格式更加严格,比如说在 JSON 中属性值不能为函数,不能出现 NaN 这样的属性值等,因此大多数的 js 对象是不符合 JSON 对象的格式的。

在 js 中提供了两个函数来实现 js 数据结构和 JSON 格式的转换处理,

  • JSON.stringify 函数,通过传入一个符合 JSON 格式的数据结构,将其转换为一个 JSON 字符串。如果传入的数据结构不符合 JSON 格式,那么在序列化的时候会对这些值进行对应的特殊处理,使其符合规范。在前端向后端发送数据时,可以调用这个函数将数据对象转化为 JSON 格式的字符串。
  • JSON.parse() 函数,这个函数用来将 JSON 格式的字符串转换为一个 js 数据结构,如果传入的字符串不是标准的 JSON 格式的字符串的话,将会抛出错误。当从后端接收到 JSON 格式的字符串时,可以通过这个方法来将其解析为一个 js 数据结构,以此来进行数据的访问。

js脚本加载问题,async、defer问题

  • 如果依赖其他脚本和 DOM 结果,使用 defer
  • 如果与 DOM 和其他脚本依赖不强时,使用 async

代码输出结果

function Foo(){
    Foo.a = function(){
        console.log(1);
    }
    this.a = function(){
        console.log(2)
    }
}

Foo.prototype.a = function(){
    console.log(3);
}

Foo.a = function(){
    console.log(4);
}

Foo.a();
let obj = new Foo();
obj.a();
Foo.a();

输出结果:4 2 1

解析:

  1. Foo.a() 这个是调用 Foo 函数的静态方法 a,虽然 Foo 中有优先级更高的属性方法 a,但 Foo 此时没有被调用,所以此时输出 Foo 的静态方法 a 的结果:4
  2. let obj = new Foo(); 使用了 new 方法调用了函数,返回了函数实例对象,此时 Foo 函数内部的属性方法初始化,原型链建立。
  3. obj.a() ; 调用 obj 实例上的方法 a,该实例上目前有两个 a 方法:一个是内部属性方法,另一个是原型上的方法。当这两者都存在时,首先查找 ownProperty ,如果没有才去原型链上找,所以调用实例上的 a 输出:2
  4. Foo.a() ; 根据第2步可知 Foo 函数内部的属性方法已初始化,覆盖了同名的静态方法,所以输出:1

代码输出问题

function A(){
}
function B(a){
  this.a = a;
}
function C(a){
  if(a){
this.a = a;
  }
}
A.prototype.a = 1;
B.prototype.a = 1;
C.prototype.a = 1;

console.log(new A().a);
console.log(new B().a);
console.log(new C(2).a);

输出结果:1 undefined 2

解析:

  1. console.log(new A().a),new A()为构造函数创建的对象,本身没有a属性,所以向它的原型去找,发现原型的a属性的属性值为1,故该输出值为1;
  2. console.log(new B().a),ew B()为构造函数创建的对象,该构造函数有参数a,但该对象没有传参,故该输出值为undefined;
  3. console.log(new C(2).a),new C()为构造函数创建的对象,该构造函数有参数a,且传的实参为2,执行函数内部,发现if为真,执行this.a = 2,故属性a的值为2。

如何防御 CSRF 攻击?

CSRF 攻击可以使用以下方法来防护:

  • 进行同源检测,服务器根据 http 请求头中 origin 或者 referer 信息来判断请求是否为允许访问的站点,从而对请求进行过滤。当 origin 或者 referer 信息都不存在的时候,直接阻止请求。这种方式的缺点是有些情况下 referer 可以被伪造,同时还会把搜索引擎的链接也给屏蔽了。所以一般网站会允许搜索引擎的页面请求,但是相应的页面请求这种请求方式也可能被攻击者给利用。(Referer 字段会告诉服务器该网页是从哪个页面链接过来的)
  • 使用 CSRF Token 进行验证,服务器向用户返回一个随机数 Token ,当网站再次发起请求时,在请求参数中加入服务器端返回的 token ,然后服务器对这个 token 进行验证。这种方法解决了使用 cookie 单一验证方式时,可能会被冒用的问题,但是这种方法存在一个缺点就是,我们需要给网站中的所有请求都添加上这个 token,操作比较繁琐。还有一个问题是一般不会只有一台网站服务器,如果请求经过负载平衡转移到了其他的服务器,但是这个服务器的 session 中没有保留这个 token 的话,就没有办法验证了。这种情况可以通过改变 token 的构建方式来解决。
  • 对 Cookie 进行双重验证,服务器在用户访问网站页面时,向请求域名注入一个Cookie,内容为随机字符串,然后当用户再次向服务器发送请求的时候,从 cookie 中取出这个字符串,添加到 URL 参数中,然后服务器通过对 cookie 中的数据和参数中的数据进行比较,来进行验证。使用这种方式是利用了攻击者只能利用 cookie,但是不能访问获取 cookie 的特点。并且这种方法比 CSRF Token 的方法更加方便,并且不涉及到分布式访问的问题。这种方法的缺点是如果网站存在 XSS 漏洞的,那么这种方式会失效。同时这种方式不能做到子域名的隔离。
  • 在设置 cookie 属性的时候设置 Samesite ,限制 cookie 不能作为被第三方使用,从而可以避免被攻击者利用。Samesite 一共有两种模式,一种是严格模式,在严格模式下 cookie 在任何情况下都不可能作为第三方 Cookie 使用,在宽松模式下,cookie 可以被请求是 GET 请求,且会发生页面跳转的请求所使用。

instance 如何使用

左边可以是任意值,右边只能是函数

'hello tuture' instanceof String // false

说一下HTTP 3.0

HTTP/3基于UDP协议实现了类似于TCP的多路复用数据流、传输可靠性等功能,这套功能被称为QUIC协议。

  1. 流量控制、传输可靠性功能:QUIC在UDP的基础上增加了一层来保证数据传输可靠性,它提供了数据包重传、拥塞控制、以及其他一些TCP中的特性。
  2. 集成TLS加密功能:目前QUIC使用TLS1.3,减少了握手所花费的RTT数。
  3. 多路复用:同一物理连接上可以有多个独立的逻辑数据流,实现了数据流的单独传输,解决了TCP的队头阻塞问题。
  4. 快速握手:由于基于UDP,可以实现使用0 ~ 1个RTT来建立连接。
转载自:https://segmentfault.com/a/1190000042457702
评论
请登录