深度有趣 | 11 TensorFlow物体检测
简介
TensorFlow提供了用于检测图片或视频中所包含物体的API,详情可参考以下链接
物体检测和图片分类不同
- 图片分类是将图片分为某一类别,即从多个可能的分类中选择一个,即使可以按照概率输出最可能的多个分类,但理论上的正确答案只有一个
- 物体检测是检测图片中所出现的全部物体并且用矩形(Anchor Box)进行标注,物体的类别可以包括多种,例如人、车、动物、路标等,即正确答案可以是多个
通过多个例子,了解TensorFlow物体检测API的使用方法
这里使用预训练好的ssd_mobilenet_v1_coco
模型(Single Shot MultiBox Detector),更多可用的物体检测模型可以参考这里
举个例子
加载库
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from PIL import Image
from utils import label_map_util
from utils import visualization_utils as vis_util
定义一些常量
PATH_TO_CKPT = 'ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb'
PATH_TO_LABELS = 'ssd_mobilenet_v1_coco_2017_11_17/mscoco_label_map.pbtxt'
NUM_CLASSES = 90
加载预训练好的模型
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
od_graph_def.ParseFromString(fid.read())
tf.import_graph_def(od_graph_def, name='')
加载分类标签数据
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
一个将图片转为数组的辅助函数,以及测试图片路径
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)
TEST_IMAGE_PATHS = ['test_images/image1.jpg', 'test_images/image2.jpg']
使用模型进行物体检测
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
image_np = load_image_into_numpy_array(image)
image_np_expanded = np.expand_dims(image_np, axis=0)
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8)
plt.figure(figsize=[12, 8])
plt.imshow(image_np)
plt.show()
检测结果如下,第一张图片检测出了两只狗狗

第二张图片检测出了一些人和风筝

摄像头检测
安装OpenCV
,用于实现和计算机视觉相关的功能,版本为3.3.0.10
pip install opencv-python opencv-contrib-python -i https://pypi.tuna.tsinghua.edu.cn/simple
查看是否安装成功,没有报错即可
import cv2
tracker = cv2.TrackerMedianFlow_create()
在以上代码的基础上进行修改
- 加载
cv2
并获取摄像头 - 不断地从摄像头获取图片
- 将检测后的结果输出
完整代码如下
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
from utils import label_map_util
from utils import visualization_utils as vis_util
import cv2
cap = cv2.VideoCapture(0)
PATH_TO_CKPT = 'ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb'
PATH_TO_LABELS = 'ssd_mobilenet_v1_coco_2017_11_17/mscoco_label_map.pbtxt'
NUM_CLASSES = 90
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
od_graph_def.ParseFromString(fid.read())
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
while True:
ret, image_np = cap.read()
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
image_np_expanded = np.expand_dims(image_np, axis=0)
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8)
cv2.imshow('object detection', cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR))
if cv2.waitKey(25) & 0xFF == ord('q'):
cap.release()
cv2.destroyAllWindows()
break
视频检测
使用cv2
读取视频并获取每一帧图片,然后将检测后的每一帧写入新的视频文件
生成的视频文件只有图像、没有声音,关于音频的处理以及视频和音频的合成,后面再进一步探索
完整代码如下
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
from utils import label_map_util
from utils import visualization_utils as vis_util
import cv2
cap = cv2.VideoCapture('绝地逃亡.mov')
ret, image_np = cap.read()
out = cv2.VideoWriter('output.mov', -1, cap.get(cv2.CAP_PROP_FPS), (image_np.shape[1], image_np.shape[0]))
PATH_TO_CKPT = 'ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb'
PATH_TO_LABELS = 'ssd_mobilenet_v1_coco_2017_11_17/mscoco_label_map.pbtxt'
NUM_CLASSES = 90
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
od_graph_def.ParseFromString(fid.read())
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
while cap.isOpened():
ret, image_np = cap.read()
if len((np.array(image_np)).shape) == 0:
break
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
image_np_expanded = np.expand_dims(image_np, axis=0)
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8)
out.write(cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR))
cap.release()
out.release()
cv2.destroyAllWindows()
播放处理好的视频,可以看到很多地方都有相应的检测结果

参考
- Introduction and Use - Tensorflow Object Detection API Tutorial:pythonprogramming.net/introductio…
- Tensorflow Object Detection API:github.com/tensorflow/…
- SSD - Single Shot MultiBox Detector:arxiv.org/pdf/1512.02…
视频讲解课程
转载自:https://juejin.cn/post/6844903682178285576