likes
comments
collection
share

X-LoRA:高效微调 LoRA 系列,实现不同领域知识专家混合模型

作者站长头像
站长
· 阅读数 12

📜 文献卡


X-LORA: MIXTURE OF LOW-RANK ADAPTER EXPERTS, A FLEXIBLE FRAMEWORK FOR LARGE LANGUAGE MODELS WITH APPLICATIONS IN PROTEIN MECHANICS AND MOLECULAR DESIGN
作者: Eric L. Buehler; Markus J. Buehler
DOI: 10.48550/arXiv.2402.07148
摘要:We report a mixture of expert strategy to create fine-tuned large language models using a deep layer-wise token-level approach based on low-rank adaptation (LoRA). Starting with a set of pre-trained LoRA adapters, our gating strategy uses the hidden states to dynamically mix adapted layers, allowing the resulting X-LoRA model to draw upon different capabilities and create never-before-used deep layer-wise combinations to solve tasks. The design is inspired by the biological principles of universality and diversity, where neural network building blocks are reused in different hierarchical manifestations. Hence, the X-LoRA model can be easily implemented for any existing large language model (LLM) without a need for modifications of the underlying structure. We develop a tailored X-LoRA model that offers scientific capabilities including forward/inverse analysis tasks and enhanced reasoning capability, focused on biomaterial analysis, protein mechanics and design. The impact of this work include access to readily expandable and adaptable models with strong domain knowledge and the capability to integrate across areas of knowledge. Featuring experts in biology, mathematics, reasoning, bio-inspired materials, mechanics and materials, chemistry, protein biophysics, mechanics and quantum-mechanics based molecular properties, we conduct a series of physics-focused case studies. We examine knowledge recall, protein mechanics forward/inverse tasks, protein design, adversarial agentic modeling including ontological knowledge graph construction, as well as molecular design. The model is capable not only of making quantitative predictions of nanomechanical properties of proteins or quantum mechanical molecular properties, but also reasons over the results and correctly predicts likely mechanisms that explain distinct molecular behaviors.*
GitHub(Pytorch) : EricLBuehler/xlora: X-LoRA: Mixture of LoRA Experts (github.com)

⚙️ 内容

本研究提出了一种名为X-LoRA的混合低秩适配器专家框架,旨在为大型语言模型提供灵活性和领域专长,特别是针对蛋白质力学和分子设计。通过结合多个预训练的低秩适配器(LoRA),X-LoRA模型利用隐藏状态动态混合这些层,以解决特定任务。这种方法受生物学原理启发,即在不同层次结构中复用神经网络构建模块,从而实现模型的通用性和多样性。

💡 创新点

  • 灵活的适配器混合策略:X-LoRA模型能够根据任务需求动态调整各层的权重,利用不同领域的专业知识。
  • 跨学科能力集成:模型集成了物理科学、生物材料学、化学、数学、逻辑推理等多个领域的知识,实现了跨领域知识的融合。
  • 深度层级混合:允许从未有过的深层结构组合,创造新的解决问题的方法。
  • 无需修改基础模型:X-LoRA设计可轻松应用于现有大型语言模型,无需改变其底层架构。
  • 自适应学习率缩放:通过一个基于隐藏状态的可训练组件(X-LoRA缩放头)预测每个适配器的缩放因子,实现了高度粒度的控制。

🧩 不足

  • 定制化训练数据需求:虽然X-LoRA能够有效利用已有适配器,但更精细的领域导向训练数据开发是未来需要探索的方向。
  • 混合机制理解有限:虽然观察到有趣的专业激活模式,但对于混合模型部分如何以及为何能产生优势的深入理解还有待进一步研究。
  • 多模型交互潜力未完全挖掘:虽然展示了双模型的对抗性交互,但未来工作应探索更多模型参与的交互方式,以推动生成能力的边界。

🔁实验卡


💧 数据

  • 使用了Zephyr-7B-β模型作为基础,该模型建立在Mistral-7B模型之上,并且为X-LoRA开发了九个具有不同专业领域的适配器,包括生物学、化学、物理、蛋白质力学等。
  • 训练数据来源于各领域的原始训练集,以及为了训练X-LoRA缩放头而使用的几百个样本。

👩🏻‍💻 方法

  • 适配器训练:首先单独训练每个适配器以获得特定领域的专长。
  • X-LoRA整合训练:然后将这些适配器整合到一个模型中,并通过一个可训练的缩放头来动态调整它们的贡献。
  • 知识图谱生成:利用Zephyr-7B-β提取文本中的三元组,结合Llama Index图生成算法,通过NetworX和Pyvis可视化。

🔬 实验

  • 应用了X-LoRA模型于一系列任务,如问答、对话建模、蛋白质设计分析等。
  • 通过跟踪长期对话,展示模型能动态调用不同的尺度机制以最佳响应任务。
  • 对特定氨基酸序列的应用进行了案例分析,包括预测其展开力和能量,并讨论了蛋白质工程的潜在应用。

📜 结论

X-LoRA成功展示了在蛋白质力学和分子设计领域的应用,能够预测纳米机械性质和量子力学分子性质,并进行结果推理。模型不仅能够进行定量预测,还能跨领域综合信息,推动模型向未探索的生成领域发展。

🤔 总结卡


X-LoRA框架的提出是一个重大的创新,它为大型语言模型的适应性和扩展性开辟了新的路径。其能够动态混合不同领域的专家知识,为解决复杂、跨学科问题提供了强大的工具。然而,关于如何更有效地设计针对特定目的的训练数据,以及如何深化对模型内部混合机制的理解,仍是未来研究的关键挑战。此外,随着对抗性交互模型的进一步发展,可能会引发更多关于模型生成能力的突破。对于模型的未来改进,可以考虑增加模型间交互的复杂度,引入更多验证手段如物理模拟或代码执行,以提高模型的真实世界应用价值。

转载自:https://juejin.cn/post/7382482992592535588
评论
请登录