likes
comments
collection
share

阿里、字节 一套高效的iOS面试题解答(持续更新,最后更新3.26)

作者站长头像
站长
· 阅读数 37

runtime相关问题

结构模型

1. 介绍下runtime的内存模型(isa、对象、类、metaclass、结构体的存储信息等)

2. 为什么要设计metaclass

3. class_copyIvarList & class_copyPropertyList区别

class_copyIvarList 获取类对象中的所有实例变量信息,从 class_ro_t 中获取:

Ivar *
class_copyIvarList(Class cls, unsigned int *outCount)
{
    const ivar_list_t *ivars;
    Ivar *result = nil;
    unsigned int count = 0;

    if (!cls) {
        if (outCount) *outCount = 0;
        return nil;
    }

    mutex_locker_t lock(runtimeLock);

    assert(cls->isRealized());

    if ((ivars = cls->data()->ro->ivars)  &&  ivars->count) {
        result = (Ivar *)malloc((ivars->count+1) * sizeof(Ivar));

        for (auto& ivar : *ivars) {
            if (!ivar.offset) continue;  // anonymous bitfield
            result[count++] = &ivar;
        }
        result[count] = nil;
    }

    if (outCount) *outCount = count;
    return result;
}

class_copyPropertyList 获取类对象中的属性信息, class_rw_tproperties,先后输出了 category / extension/ baseClass 的属性,而且仅输出当前的类的属性信息,而不会向上去找 superClass 中定义的属性。

objc_property_t *
class_copyPropertyList(Class cls, unsigned int *outCount)
{
    if (!cls) {
        if (outCount) *outCount = 0;
        return nil;
    }

    mutex_locker_t lock(runtimeLock);

    checkIsKnownClass(cls);
    assert(cls->isRealized());

    auto rw = cls->data();

    property_t **result = nil;
    unsigned int count = rw->properties.count();
    if (count > 0) {
        result = (property_t **)malloc((count + 1) * sizeof(property_t *));

        count = 0;
        for (auto& prop : rw->properties) {
            result[count++] = ∝
        }
        result[count] = nil;
    }

    if (outCount) *outCount = count;
    return (objc_property_t *)result;
}

Q1: class_ro_t 中的 baseProperties 呢?

Q2: class_rw_t 中的 properties 包含了所有属性,那何时注入进去的呢? 答案见 5.

4. class_rw_t 和 class_ro_t 的区别

阿里、字节 一套高效的iOS面试题解答(持续更新,最后更新3.26)
image

测试发现,class_rw_t 中的 properties 属性按顺序包含分类/扩展/基类中的属性。

struct class_ro_t {
    uint32_t flags;
    uint32_t instanceStart;
    uint32_t instanceSize;
#ifdef __LP64__
    uint32_t reserved;
#endif

    const uint8_t * ivarLayout;

    const char * name;
    method_list_t * baseMethodList;
    protocol_list_t * baseProtocols;
    const ivar_list_t * ivars;

    const uint8_t * weakIvarLayout;
    property_list_t *baseProperties;

    method_list_t *baseMethods() const {
        return baseMethodList;
    }
};

struct class_rw_t {
    // Be warned that Symbolication knows the layout of this structure.
    uint32_t flags;
    uint32_t version;

    const class_ro_t *ro;

    method_array_t methods;
    property_array_t properties;
    protocol_array_t protocols;

    Class firstSubclass;
    Class nextSiblingClass;

    char *demangledName;

#if SUPPORT_INDEXED_ISA
    uint32_t index;
#endif
}

5. category如何被加载的,两个category的load方法的加载顺序,两个category的同名方法的加载顺序

... -> realizeClass -> methodizeClass(用于Attach categories)-> attachCategories 关键就是在 methodizeClass 方法实现中

static void methodizeClass(Class cls)
{
    runtimeLock.assertLocked();

    bool isMeta = cls->isMetaClass();
    auto rw = cls->data();
    auto ro = rw->ro;

    // =======================================
        // 省略.....
    // =======================================

    property_list_t *proplist = ro->baseProperties;
    if (proplist) {
        rw->properties.attachLists(&proplist, 1);
    }

    // =======================================
        // 省略.....
    // =======================================

    // Attach categories.
    category_list *cats = unattachedCategoriesForClass(cls, true /*realizing*/);
    attachCategories(cls, cats, false /*don't flush caches*/);

    // =======================================
        // 省略.....
    // =======================================

    if (cats) free(cats);

}


上面代码能确定 baseProperties 在前,category 在后,但决定顺序的是 rw->properties.attachLists 这个方法:

property_list_t *proplist = ro->baseProperties;
if (proplist) {
  rw->properties.attachLists(&proplist, 1);
}

/// category 被附加进去
void attachLists(List* const * addedLists, uint32_t addedCount) {
        if (addedCount == 0) return;

        if (hasArray()) {
            // many lists -> many lists
            uint32_t oldCount = array()->count;
            uint32_t newCount = oldCount + addedCount;
            setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
            array()->count = newCount;

            // 将旧内容移动偏移量 addedCount 然后将 addedLists copy 到起始位置
            /*
                struct array_t {
                        uint32_t count;
                        List* lists[0];
                        };
            */
            memmove(array()->lists + addedCount, array()->lists, 
                    oldCount * sizeof(array()->lists[0]));
            memcpy(array()->lists, addedLists, 
                   addedCount * sizeof(array()->lists[0]));
        }
        else if (!list  &&  addedCount == 1) {
            // 0 lists -> 1 list
            list = addedLists[0];
        } 
        else {
            // 1 list -> many lists
            List* oldList = list;
            uint32_t oldCount = oldList ? 1 : 0;
            uint32_t newCount = oldCount + addedCount;
            setArray((array_t *)malloc(array_t::byteSize(newCount)));
            array()->count = newCount;
            if (oldList) array()->lists[addedCount] = oldList;
            memcpy(array()->lists, addedLists, 
                   addedCount * sizeof(array()->lists[0]));
        }
    }

所以 category 的属性总是在前面的,baseClass的属性被往后偏移了。

Q1:那么多个 category 的顺序呢?答案见6

2020/03/18 补充下应用程序 image 镜像加载到内存中时, Category 解析的过程,注意下面的 while(i--) 这里倒叙将 category 中的协议 方法 属性添加到了 rw = cls->data() 中的 methods/properties/protocols 中。

static void 
attachCategories(Class cls, category_list *cats, bool flush_caches)
{
    if (!cats) return;
    if (PrintReplacedMethods) printReplacements(cls, cats);

    bool isMeta = cls->isMetaClass();

    // fixme rearrange to remove these intermediate allocations
    method_list_t **mlists = (method_list_t **)
        malloc(cats->count * sizeof(*mlists));
    property_list_t **proplists = (property_list_t **)
        malloc(cats->count * sizeof(*proplists));
    protocol_list_t **protolists = (protocol_list_t **)
        malloc(cats->count * sizeof(*protolists));

    // Count backwards through cats to get newest categories first
    int mcount = 0;
    int propcount = 0;
    int protocount = 0;
    int i = cats->count;
    bool fromBundle = NO;
    while (i--) {
        auto& entry = cats->list[i];

        method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
        if (mlist) {
            mlists[mcount++] = mlist;
            fromBundle |= entry.hi->isBundle();
        }

        property_list_t *proplist = 
            entry.cat->propertiesForMeta(isMeta, entry.hi);
        if (proplist) {
            proplists[propcount++] = proplist;
        }

        protocol_list_t *protolist = entry.cat->protocols;
        if (protolist) {
            protolists[protocount++] = protolist;
        }
    }
    auto rw = cls->data();

    // 注意下面的代码,上面采用倒叙遍历方式,所以后编译的 category 会先add到数组的前部
    prepareMethodLists(cls, mlists, mcount, NO, fromBundle);
    rw->methods.attachLists(mlists, mcount);
    free(mlists);
    if (flush_caches  &&  mcount > 0) flushCaches(cls);

    rw->properties.attachLists(proplists, propcount);
    free(proplists);

    rw->protocols.attachLists(protolists, protocount);
    free(protolists);
}

6. category & extension区别,能给NSObject添加Extension吗,结果如何

category:

  • 运行时添加分类属性/协议/方法
  • 分类添加的方法会“覆盖”原类方法,因为方法查找的话是从头至尾,一旦查找到了就停止了
  • 同名分类方法谁生效取决于编译顺序,image 读取的信息是倒叙的,所以编译越靠后的越先读入
  • 名字相同的分类会引起编译报错;

extension:

  • 编译时决议
  • 只以声明的形式存在,多数情况下就存在于 .m 文件中;
  • 不能为系统类添加扩展

7. 消息转发机制,消息转发机制和其他语言的消息机制优劣对比

8. 在方法调用的时候,方法查询-> 动态解析-> 消息转发 之前做了什么

9. IMP、SEL、Method的区别和使用场景

三者的定义:

typedef struct method_t *Method;

using MethodListIMP = IMP;

struct method_t {
    SEL name;
    const char *types;
    MethodListIMP imp;
};

Method 同样是个对象,封装了方法名和实现,关于 Type Encodings

CodeMeaning
cA char
iAn int
sA short
lA long``l is treated as a 32-bit quantity on 64-bit programs.
qA long long
CAn unsigned char
IAn unsigned int
SAn unsigned short
LAn unsigned long
QAn unsigned long long
fA float
dA double
BA C++ bool or a C99 _Bool
vA void
*A character string (char *)
@An object (whether statically typed or typed id)
#A class object (Class)
:A method selector (SEL)
[
array type
]
An array
{
name=type...
}
A structure
(
name
=
type...
)
A union
bnumA bit field of
num
bits
^typeA pointer to
type
?An unknown type (among other things, this code is used for function pointers)

-(void)hello:(NSString *)name encode 下就是 v@:@

10. load、initialize方法的区别什么?在继承关系中他们有什么区别

load 方法调用时机,而且只调用当前类本身,不会调用superClass 的 +load 方法:

void
load_images(const char *path __unused, const struct mach_header *mh)
{
    // Return without taking locks if there are no +load methods here.
    if (!hasLoadMethods((const headerType *)mh)) return;

    recursive_mutex_locker_t lock(loadMethodLock);

    // Discover load methods
    {
        mutex_locker_t lock2(runtimeLock);
        prepare_load_methods((const headerType *)mh);
    }

    // Call +load methods (without runtimeLock - re-entrant)
    call_load_methods();
}

void call_load_methods(void)
{
    static bool loading = NO;
    bool more_categories;

    loadMethodLock.assertLocked();

    // Re-entrant calls do nothing; the outermost call will finish the job.
    if (loading) return;
    loading = YES;

    void *pool = objc_autoreleasePoolPush();

    do {
        // 1\. Repeatedly call class +loads until there aren't any more
        while (loadable_classes_used > 0) {
            call_class_loads();
        }

        // 2\. Call category +loads ONCE
        more_categories = call_category_loads();

        // 3\. Run more +loads if there are classes OR more untried categories
    } while (loadable_classes_used > 0  ||  more_categories);

    objc_autoreleasePoolPop(pool);

    loading = NO;
}


+initialize 实现

void _class_initialize(Class cls)
{
    assert(!cls->isMetaClass());

    Class supercls;
    bool reallyInitialize = NO;

    // Make sure super is done initializing BEFORE beginning to initialize cls.
    // See note about deadlock above.
    supercls = cls->superclass;
    if (supercls  &&  !supercls->isInitialized()) {
        _class_initialize(supercls);
    }

    // Try to atomically set CLS_INITIALIZING.
    {
        monitor_locker_t lock(classInitLock);
        if (!cls->isInitialized() && !cls->isInitializing()) {
            cls->setInitializing();
            reallyInitialize = YES;
        }
    }

    if (reallyInitialize) {
        // We successfully set the CLS_INITIALIZING bit. Initialize the class.

        // Record that we're initializing this class so we can message it.
        _setThisThreadIsInitializingClass(cls);

        if (MultithreadedForkChild) {
            // LOL JK we don't really call +initialize methods after fork().
            performForkChildInitialize(cls, supercls);
            return;
        }

        // Send the +initialize message.
        // Note that +initialize is sent to the superclass (again) if 
        // this class doesn't implement +initialize. 2157218
        if (PrintInitializing) {
            _objc_inform("INITIALIZE: thread %p: calling +[%s initialize]",
                         pthread_self(), cls->nameForLogging());
        }

        // Exceptions: A +initialize call that throws an exception 
        // is deemed to be a complete and successful +initialize.
        //
        // Only __OBJC2__ adds these handlers. !__OBJC2__ has a
        // bootstrapping problem of this versus CF's call to
        // objc_exception_set_functions().
#if __OBJC2__
        @try
#endif
        {
            callInitialize(cls);

            if (PrintInitializing) {
                _objc_inform("INITIALIZE: thread %p: finished +[%s initialize]",
                             pthread_self(), cls->nameForLogging());
            }
        }
#if __OBJC2__
        @catch (...) {
            if (PrintInitializing) {
                _objc_inform("INITIALIZE: thread %p: +[%s initialize] "
                             "threw an exception",
                             pthread_self(), cls->nameForLogging());
            }
            @throw;
        }
        @finally
#endif
        {
            // Done initializing.
            lockAndFinishInitializing(cls, supercls);
        }
        return;
    }

    else if (cls->isInitializing()) {
        // We couldn't set INITIALIZING because INITIALIZING was already set.
        // If this thread set it earlier, continue normally.
        // If some other thread set it, block until initialize is done.
        // It's ok if INITIALIZING changes to INITIALIZED while we're here, 
        //   because we safely check for INITIALIZED inside the lock 
        //   before blocking.
        if (_thisThreadIsInitializingClass(cls)) {
            return;
        } else if (!MultithreadedForkChild) {
            waitForInitializeToComplete(cls);
            return;
        } else {
            // We're on the child side of fork(), facing a class that
            // was initializing by some other thread when fork() was called.
            _setThisThreadIsInitializingClass(cls);
            performForkChildInitialize(cls, supercls);
        }
    }

    else if (cls->isInitialized()) {
        // Set CLS_INITIALIZING failed because someone else already 
        //   initialized the class. Continue normally.
        // NOTE this check must come AFTER the ISINITIALIZING case.
        // Otherwise: Another thread is initializing this class. ISINITIALIZED 
        //   is false. Skip this clause. Then the other thread finishes 
        //   initialization and sets INITIALIZING=no and INITIALIZED=yes. 
        //   Skip the ISINITIALIZING clause. Die horribly.
        return;
    }

    else {
        // We shouldn't be here. 
        _objc_fatal("thread-safe class init in objc runtime is buggy!");
    }
}

void callInitialize(Class cls)
{
    ((void(*)(Class, SEL))objc_msgSend)(cls, SEL_initialize);
    asm("");
}


注意看上面的调用了 callInitialize(cls) 然后又调用了 lockAndFinishInitializing(cls, supercls)

阶段工作
加载动态库Dyld从主执行文件的header获取到需要加载的所依赖动态库列表,然后它需要找到每个 dylib,而应用所依赖的 dylib 文件可能会再依赖其他 dylib,所以所需要加载的是动态库列表一个递归依赖的集合
Rebase和Bind- Rebase在Image内部调整指针的指向。在过去,会把动态库加载到指定地址,所有指针和数据对于代码都是对的,而现在地址空间布局是随机化,所以需要在原来的地址根据随机的偏移量做一下修正 - Bind是把指针正确地指向Image外部的内容。这些指向外部的指针被符号(symbol)名称绑定,dyld需要去符号表里查找,找到symbol对应的实现
Objc setup- 注册Objc类 (class registration) - 把category的定义插入方法列表 (category registration) - 保证每一个selector唯一 (selector uniquing)
Initializers- Objc的+load()函数 - C++的构造函数属性函数 - 非基本类型的C++静态全局变量的创建(通常是类或结构体)

最后 dyld 会调用 main() 函数,main() 会调用 UIApplicationMain(),before main()的过程也就此完成。

11. 说说消息转发机制的优劣

内存管理

1.weak的实现原理?SideTable的结构是什么样的

解答参考自瓜神的 weak 弱引用的实现方式

NSObject *p = [[NSObject alloc] init];
__weak NSObject *p1 = p;
// ====> 底层是runtime的 objc_initWeak
// xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc -fobjc-arc -fobjc-runtime=ios-13.2 main.m 得不到下面的代码,还是说命令参数不对。
NSObject objc_initWeak(&p, 对象指针);

通过 runtime 源码可以看到 objc_initWeak 实现:

id
objc_initWeakOrNil(id *location, id newObj)
{
    if (!newObj) {
        *location = nil;
        return nil;
    }

    return storeWeak<DontHaveOld, DoHaveNew, DontCrashIfDeallocating>
        (location, (objc_object*)newObj);
}

SideTable 结构体在 runtime 底层用于引用计数和弱引用关联表,其数据结构是这样:

struct SideTable {
    // 自旋锁
    spinlock_t slock;
    // 引用计数
    RefcountMap refcnts;
    // weak 引用
    weak_table_t weak_table;
}

struct weak_table_t {
    // 保存了所有指向指定对象的 weak 指针
    weak_entry_t *weak_entries;
    // 存储空间
    size_t    num_entries;
    // 参与判断引用计数辅助量
    uintptr_t mask;
    // hash key 最大偏移值
    uintptr_t max_hash_displacement;
};

根据对象的地址在缓存中取出对应的 SideTable 实例:

static SideTable *tableForPointer(const void *p)

或者如上面源码中 &SideTables()[newObj] 方式取表,这里的 newObj 是实例对象用其指针作为 key 拿到 从全局的 SideTables 中拿到实例自身对应的那张 SideTable

static StripedMap<SideTable>& SideTables() {
    return *reinterpret_cast<StripedMap<SideTable>*>(SideTableBuf);
}

取出实例方法的实现中,使用了 C++ 标准转换运算符 reinterpret_cast ,其表达方式为:

reinterpret_cast <new_type> (expression)

每一个 weak 关键字修饰的对象都是用 weak_entry_t 结构体来表示,所以在实例中声明定义的 weak 对象都会被封装成 weak_entry_t 加入到该 SideTable 中 weak_table

typedef objc_object ** weak_referrer_t;

struct weak_entry_t {
    DisguisedPtr<objc_object> referent;
    union {
        struct {
            weak_referrer_t *referrers;
            uintptr_t        out_of_line : 1;
            uintptr_t        num_refs : PTR_MINUS_1;
            uintptr_t        mask;
            uintptr_t        max_hash_displacement;
        };
        struct {
            // out_of_line=0 is LSB of one of these (don't care which)
            weak_referrer_t  inline_referrers[WEAK_INLINE_COUNT];
        };
 }


旧对象解除注册操作 weak_unregister_no_lock 和 新对象添加注册操作 weak_register_no_lock ,具体实现可前往 runtime 源码中查看或查看瓜的博文。

阿里、字节 一套高效的iOS面试题解答(持续更新,最后更新3.26)
image

weak 关键字修饰的对象有两种情况:栈上和堆上。上图主要解释 id referent_id 和 id *referrer_id

  • 如果是栈上, referrer 值为 0x77889900,referent 值为 0x11223344
  • 如果是堆上 , referrer 值为 0x1100000+ offset(也就是 weak a 所在堆上的地址),referent 值为 0x11223344。

如此现在类 A 的实例对象有两个 weak 变量指向它,一个在堆上,一个在栈上。

void
weak_unregister_no_lock(weak_table_t *weak_table, id referent_id, 
                        id *referrer_id)
{
    objc_object *referent = (objc_object *)referent_id;   //  0x11223344
    objc_object **referrer = (objc_object **)referrer_id; //  0x77889900

    weak_entry_t *entry;

    if (!referent) return;

    // 从 weak_table 中找到 referent 也就是上面类A的实例对象
    if ((entry = weak_entry_for_referent(weak_table, referent))) {
        // 在 entry 结构体中的 referrers 数组中找到指针 referrer 所在位置
        // 将原本存储 referrer 值的位置置为 nil,相当于做了一个解绑操作
        // 因为 referrer 要和其他对象建立关系了
        remove_referrer(entry, referrer);
        bool empty = true;
        if (entry->out_of_line()  &&  entry->num_refs != 0) {
            empty = false;
        }
        else {
            for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
                if (entry->inline_referrers[i]) {
                    empty = false; 
                    break;
                }
            }
        }

        if (empty) {
            weak_entry_remove(weak_table, entry);
        }
    }

    // Do not set *referrer = nil. objc_storeWeak() requires that the 
    // value not change.
}

weak 关键字修饰的属性或者变量为什么在对应类实例dealloc后会置为nil,那是因为在类实例释放的时候,dealloc 会从全局的引用计数和weak计数表sideTables中,通过实例地址去找到属于自己的那张表,表中的 weak_table->weak_entries 存储了所有 entry 对象——其实就是所有指向这个实例对象的变量,weak_entry_t 中的 referrers 数组存储的就是变量或属性的内存地址,逐一置为nil即可。

关联对象基本使用方法:

#import <objc/runtime.h>

static NSString * const kKeyOfImageProperty;

@implementation UIView (Image)

- (UIImage *)pt_image {
    return objc_getAssociatedObject(self, &kKeyOfImageProperty);
}

- (void)setPTImage:(UIImage *)image {
    objc_setAssociatedObject(self, &kKeyOfImageProperty, image,OBJC_ASSOCIATION_RETAIN);
}
@end

objc_AssociationPolicy 关联对象持有策略有如下几种 :

Behavior@property EquivalentDescription
OBJC_ASSOCIATION_ASSIGN@property (assign) 或 @property (unsafe_unretained)指定一个关联对象的弱引用。
OBJC_ASSOCIATION_RETAIN_NONATOMIC@property (nonatomic, strong)指定一个关联对象的强引用,不能被原子化使用。
OBJC_ASSOCIATION_COPY_NONATOMIC@property (nonatomic, copy)指定一个关联对象的copy引用,不能被原子化使用。
OBJC_ASSOCIATION_RETAIN@property (atomic, strong)指定一个关联对象的强引用,能被原子化使用。
OBJC_ASSOCIATION_COPY@property (atomic, copy)指定一个关联对象的copy引用,能被原子化使用。
OBJC_ASSOCIATION_GETTER_AUTORELEASE自动释放类型

摘自瓜地:OBJC_ASSOCIATION_ASSIGN类型的关联对象和weak有一定差别,而更加接近于unsafe_unretained,即当目标对象遭到摧毁时,属性值不会自动清空。(翻译自Associated Objects

同样是Associated Objects文中,总结了三个关于Associated Objects用法:

源码实现非常简单,我添加了完整注释,对c++语法也做了一定解释:

id _object_get_associative_reference(id object, void *key) {
    id value = nil;
    uintptr_t policy = OBJC_ASSOCIATION_ASSIGN;
    {
        AssociationsManager manager;
        // manager.associations() 返回的是一个 `AssociationsHashMap` 对象(*_map)
        // 所以这里 `&associations` 中用了 `&`
        AssociationsHashMap &associations(manager.associations());
        // intptr_t 是为了兼容平台,在64位的机器上,intptr_t和uintptr_t分别是long int、unsigned long int的别名;在32位的机器上,intptr_t和uintptr_t分别是int、unsigned int的别名
        // DISGUISE 内部对指针做了 ~ 取反操作,“伪装”?
        disguised_ptr_t disguised_object = DISGUISE(object);
        /*
         AssociationsHashMap 继承自 unordered_map,存储 key-value 的组合
         iterator find ( const key_type& key ),如果 key 存在,则返回key对象的迭代器,
         如果key不存在,则find返回 unordered_map::end;因此可以通过 `map.find(key) == map.end()`
         判断 key 是否存在于当前 map 中。
         */
        AssociationsHashMap::iterator i = associations.find(disguised_object);
        if (i != associations.end()) {
            /*
                unordered_map 的键值分别是迭代器的first和second属性。
                所以说上面先通过 object 对象(实例对象or类对象) 找到其所有关联对象
                i->second 取到又是一个 ObjectAssociationMap
                此刻再通过我们自己设定的 key 来查找对应的关联属性值,不过使用
                `ObjcAssociation` 封装的
             */
            ObjectAssociationMap *refs = i->second;
            ObjectAssociationMap::iterator j = refs->find(key);
            if (j != refs->end()) {
                ObjcAssociation &entry = j->second;
                value = entry.value();
                policy = entry.policy();
                // 如果策略是 getter retain ,注意这里留个坑
                // 平常 OBJC_ASSOCIATION_RETAIN = 01401
                // OBJC_ASSOCIATION_GETTER_RETAIN = (1 << 8)
                if (policy & OBJC_ASSOCIATION_GETTER_RETAIN) {
                    // TODO: 有学问
                    objc_retain(value);
                }
            }
        }
    }
    if (value && (policy & OBJC_ASSOCIATION_GETTER_AUTORELEASE)) {
        objc_autorelease(value);
    }
    return value;
}

对应的set操作实现同样简单,耐心看下源码注释,即使不同c++都没问题:

void _object_set_associative_reference(id object, void *key, id value, uintptr_t policy) {
    // retain the new value (if any) outside the lock.
    ObjcAssociation old_association(0, nil);
    // 如果value对象存在,则进行retain or copy 操作
    id new_value = value ? acquireValue(value, policy) : nil;
    {
        AssociationsManager manager;
        // manager.associations() 返回的是一个 `AssociationsHashMap` 对象(*_map)
        // 所以这里 `&associations` 中用了 `&`
        AssociationsHashMap &associations(manager.associations());
        // intptr_t 是为了兼容平台,在64位的机器上,intptr_t和uintptr_t分别是long int、unsigned long int的别名;在32位的机器上,intptr_t和uintptr_t分别是int、unsigned int的别名
        // DISGUISE 内部对指针做了 ~ 取反操作,“伪装”
        disguised_ptr_t disguised_object = DISGUISE(object);
        if (new_value) {
            // break any existing association.
            /*
             AssociationsHashMap 继承自 unordered_map,存储 key-value 的组合
             iterator find ( const key_type& key ),如果 key 存在,则返回key对象的迭代器,
             如果key不存在,则find返回 unordered_map::end;因此可以通过 `map.find(key) == map.end()`
             判断 key 是否存在于当前 map 中。
             */
            AssociationsHashMap::iterator i = associations.find(disguised_object);
            // 这里和get操作不同,set操作时如果查询到对象没有关联对象,那么这一次设值是第一次,
            // 所以会创建一个新的 ObjectAssociationMap 用来存储实例对象的所有关联属性
            if (i != associations.end()) {
                // secondary table exists
                /*
                    unordered_map 的键值分别是迭代器的first和second属性。
                    所以说上面先通过 object 对象(实例对象or类对象) 找到其所有关联对象
                    i->second 取到又是一个 ObjectAssociationMap
                    此刻再通过我们自己设定的 key 来查找对应的关联属性值,不过使用
                    `ObjcAssociation` 封装的
                 */
                ObjectAssociationMap *refs = i->second;
                ObjectAssociationMap::iterator j = refs->find(key);
                // 关联属性用 ObjcAssociation 结构体封装
                if (j != refs->end()) {
                    old_association = j->second;
                    j->second = ObjcAssociation(policy, new_value);
                } else {
                    (*refs)[key] = ObjcAssociation(policy, new_value);
                }
            } else {
                // create the new association (first time).
                ObjectAssociationMap *refs = new ObjectAssociationMap;
                associations[disguised_object] = refs;
                (*refs)[key] = ObjcAssociation(policy, new_value);
                // 知识点是:newisa.has_assoc = true;
                object->setHasAssociatedObjects();
            }
        } else {
            // setting the association to nil breaks the association.
            AssociationsHashMap::iterator i = associations.find(disguised_object);
            if (i !=  associations.end()) {
                ObjectAssociationMap *refs = i->second;
                ObjectAssociationMap::iterator j = refs->find(key);
                if (j != refs->end()) {
                    old_association = j->second;
                    refs->erase(j);
                }
            }
        }
    }
    // release the old value (outside of the lock).
    if (old_association.hasValue()) ReleaseValue()(old_association);
}

3. 关联对象的如何进行内存管理的?关联对象如何实现weak属性

使用了 policy 设置内存管理策略,具体见上。

4. Autoreleasepool的原理?所使用的的数据结构是什么

5. ARC的实现原理?ARC下对retain & release做了哪些优化

6. ARC下哪些情况会造成内存泄漏

其他

  1. Method Swizzle注意事项
  2. 属性修饰符atomic的内部实现是怎么样的?能保证线程安全吗
  3. iOS 中内省的几个方法有哪些?内部实现原理是什么
  4. class、objc_getClass、object_getclass 方法有什么区别?

NSNotification相关

  1. 实现原理(结构设计、通知如何存储的、name&observer&SEL之间的关系等)
  2. 通知的发送时同步的,还是异步的
  3. NSNotificationCenter接受消息和发送消息是在一个线程里吗?如何异步发送消息
  4. NSNotificationQueue是异步还是同步发送?在哪个线程响应
  5. NSNotificationQueuerunloop的关系
  6. 如何保证通知接收的线程在主线程
  7. 页面销毁时不移除通知会崩溃吗
  8. 多次添加同一个通知会是什么结果?多次移除通知呢
  9. 下面的方式能接收到通知吗?为什么
// 发送通知
[[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(handleNotification:) name:@"TestNotification" object:@1];
// 接收通知
[NSNotificationCenter.defaultCenter postNotificationName:@"TestNotification" object:nil];

Runloop & KVO

runloop

runloop对于一个标准的iOS开发来说都不陌生,应该说熟悉runloop是标配,下面就随便列几个典型问题吧

  1. app如何接收到触摸事件的
  2. 为什么只有主线程的runloop是开启的
  3. 为什么只在主线程刷新UI
  4. PerformSelectorrunloop的关系
  5. 如何使线程保活

KVO

runloop一样,这也是标配的知识点了,同样列出几个典型问题

  1. 实现原理
  2. 如何手动关闭kvo
  3. 通过KVC修改属性会触发KVO么
  4. 哪些情况下使用kvo会崩溃,怎么防护崩溃
  5. kvo的优缺点

Block

  1. block的内部实现,结构体是什么样的
  2. block是类吗,有哪些类型
  3. 一个int变量被 __block 修饰与否的区别?block的变量截获
  4. block在修改NSMutableArray,需不需要添加__block
  5. 怎么进行内存管理的
  6. block可以用strong修饰吗
  7. 解决循环引用时为什么要用__strong、__weak修饰
  8. block发生copy时机
  9. Block访问对象类型的auto变量时,在ARC和MRC下有什么区别

多线程

主要以GCD为主

  1. iOS开发中有多少类型的线程?分别对比
  2. GCD有哪些队列,默认提供哪些队列
  3. GCD有哪些方法api
  4. GCD主线程 & 主队列的关系
  5. 如何实现同步,有多少方式就说多少
  6. dispatch_once实现原理
  7. 什么情况下会死锁
  8. 有哪些类型的线程锁,分别介绍下作用和使用场景
  9. NSOperationQueue中的maxConcurrentOperationCount默认值
  10. NSTimer、CADisplayLink、dispatch_source_t 的优劣

视图&图像相关

  1. AutoLayout的原理,性能如何
  2. UIView & CALayer的区别
  3. 事件响应链
  4. drawrect & layoutsubviews调用时机
  5. UI的刷新原理
  6. 隐式动画 & 显示动画区别
  7. 什么是离屏渲染
  8. imageName & imageWithContentsOfFile区别
  9. 多个相同的图片,会重复加载吗
  10. 图片是什么时候解码的,如何优化
  11. 图片渲染怎么优化
  12. 如果GPU的刷新率超过了iOS屏幕60Hz刷新率是什么现象,怎么解决

性能优化

  1. 如何做启动优化,如何监控
  2. 如何做卡顿优化,如何监控
  3. 如何做耗电优化,如何监控
  4. 如何做网络优化,如何监控

开发证书

  1. 苹果使用证书的目的是什么
  2. AppStore安装app时的认证流程
  3. 开发者怎么在debug模式下把app安装到设备呢

架构设计

典型源码的学习

只是列出一些iOS比较核心的开源库,这些库包含了很多高质量的思想,源码学习的时候一定要关注每个框架解决的核心问题是什么,还有它们的优缺点,这样才能算真正理解和吸收

  1. AFN
  2. SDWebImage
  3. JSPatch、Aspects(虽然一个不可用、另一个不维护,但是这两个库都很精炼巧妙,很适合学习)
  4. Weex/RN, 笔者认为这种前端和客户端紧密联系的库是必须要知道其原理的
  5. CTMediator、其他router库,这些都是常见的路由库,开发中基本上都会用到
  6. 圈友们在评论下面补充吧

架构设计

  1. 手动埋点、自动化埋点、可视化埋点
  2. MVC、MVP、MVVM设计模式
  3. 常见的设计模式
  4. 单例的弊端
  5. 常见的路由方案,以及优缺点对比
  6. 如果保证项目的稳定性
  7. 设计一个图片缓存框架(LRU)
  8. 如何设计一个git diff
  9. 设计一个线程池?画出你的架构图
  10. 你的app架构是什么,有什么优缺点、为什么这么做、怎么改进

其他问题

系统基础知识

  1. 进程和线程的区别
  2. HTTPS的握手过程
  3. 什么是中间人攻击?怎么预防
  4. TCP的握手过程?为什么进行三次握手,四次挥手
  5. 堆和栈区的区别?谁的占用内存空间大
  6. 加密算法:对称加密算法和非对称加密算法区别
  7. 常见的对称加密和非对称加密算法有哪些
  8. MD5、Sha1、Sha256区别
  9. charles抓包过程?不使用charles4G网络如何抓包

数据结构与算法

对于移动开发者来说,一般不会遇到非常难的算法,大多以数据结构为主,笔者列出一些必会的算法,当然有时间了可以去LeetCode上刷刷题

  1. 八大排序算法
  2. 栈&队列
  3. 字符串处理
  4. 链表
  5. 二叉树相关操作
  6. 深搜广搜
  7. 基本的动态规划题、贪心算法、二分查找

转载自:https://juejin.cn/post/6844904104553086983
评论
请登录