Flutter 绘制路径 Path 的全部方法介绍,一篇足矣~ (二)
[》跳过拾光记忆]
拾光记忆
简介: 该篇主要介绍15 篇文章
含有功能的目录,可根据自己的需求选择对应的功能介绍查看。
推荐: ⭐️⭐️⭐️⭐️⭐️
简介: 该篇主要介绍 Flutter 之 IImage 库中如何实现图像反色功能以及实现原理的介绍。 推荐: ⭐️⭐️⭐️⭐️⭐️
简介: 该篇主要介绍 Flutter
之 图形(Canvas
) 绘制路径 (Path
)基础功能以及方法实现底层代码的解析。
推荐: ⭐️⭐️⭐️⭐️⭐️
一、简述
路径(Path)
在图像绘制 (Canvas)
领域占有很大的地位。 你对各个开发语言的 Ptah 有多少的了解? 同时作为 Flutter 开发者,你又对 flutter 中的 Canvas-Path 又有多深的认知? 如果你感觉了解的还不是很多以及很深,这篇文章将带你进入 Path 深入了解之中。
二、Path 方法详解
1. void cubicTo(double x1, double y1, double x2, double y2, double x3, double y3)
-
方法介绍 该方法是从当前点创建以
(x1,y1)
和(x2,y2)
为控制点的三阶贝塞尔曲线。该方法底层调用了Path::cubicTo
方法,这个方法的代码实现如下所示:void CanvasPath::cubicTo(double x1, double y1, double x2, double y2, double x3, double y3) { mutable_path().cubicTo(SafeNarrow(x1), SafeNarrow(y1), SafeNarrow(x2), SafeNarrow(y2), SafeNarrow(x3), SafeNarrow(y3)); resetVolatility(); }
在上述方法中又调用了
SkPath
的cubicTo
方法,该方法的代码实现如下所示:SkPath& SkPath::cubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, SkScalar x3, SkScalar y3) { SkDEBUGCODE(this->validate();) this->injectMoveToIfNeeded(); SkPathRef::Editor ed(&fPathRef); SkPoint* pts = ed.growForVerb(kCubic_Verb); pts[0].set(x1, y1); pts[1].set(x2, y2); pts[2].set(x3, y3); return this->dirtyAfterEdit(); }
-
应用实例 在 Flutter 中该方法的使用实例如下:
void cubicTo(Canvas canvas) { final Path path = Path(); path.moveTo(100, 100); path.cubicTo(200, 20, 300, 180, 400, 100); canvas.drawPath( path, Paint() ..color = Colors.red ..style = PaintingStyle.stroke ..strokeWidth = 2, ); }
上述代码的运行效果如下:
2. void relativeCubicTo(double x1, double y1, double x2, double y2, double x3, double y3)
-
方法介绍 该方法是:添加以当前点开始到偏移
(x3,y3)
点的三阶贝塞尔曲线,并以当前点偏移(x1,y1)
和(x2,y2)
为控制点。 该方法底层调用了Path::relativeCubicTo
方法,这个方法的代码实现如下:void CanvasPath::relativeCubicTo(double x1, double y1, double x2, double y2, double x3, double y3) { mutable_path().rCubicTo(SafeNarrow(x1), SafeNarrow(y1), SafeNarrow(x2), SafeNarrow(y2), SafeNarrow(x3), SafeNarrow(y3)); resetVolatility(); }
上面代码又调用了
SkPath
的SkPath& SkPath::rCubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, SkScalar x3, SkScalar y3)
方法,这个方法的实现代码如下:SkPath& SkPath::rCubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, SkScalar x3, SkScalar y3) { this->injectMoveToIfNeeded(); // This can change the result of this->getLastPt(). SkPoint pt; this->getLastPt(&pt); return this->cubicTo(pt.fX + x1, pt.fY + y1, pt.fX + x2, pt.fY + y2, pt.fX + x3, pt.fY + y3); }
从上边代码的第 6 行,可知这个方法最后也是调用
cubicTo
方法,然后传递的参数是当前点加上我们传入的参数。 -
实例应用 在 Flutter 中该方法的调用实例如下:
void relativeCubicTo(Canvas canvas) { final Path path = Path(); path.moveTo(100, 100); path.relativeCubicTo(100, -80, 200, 80, 300, 0); canvas.drawPath( path, Paint() ..color = Colors.red ..style = PaintingStyle.stroke ..strokeWidth = 2, ); }
上面代码运行效果如下所示:
从上图可知,该方法传入的参数是以当前点为新的坐标原点而设置的数据。
3. void conicTo(double x1, double y1, double x2, double y2, double w)
-
方法介绍 该方法是创建从当前点到
(x2,y2)
点的贝塞尔曲线,并以(x1,y1)
为控制点;w
为曲线的权重。权重:是控制点对曲线的影响程度。 w > 1 时,曲线是双曲线; w = 1 时,曲线是抛物线; w < 1 时,曲线是椭圆; w = 0 时,曲线是直线。
该方法底层是调用了
Path::conicTo
方法,这个方法代码实现如下:void CanvasPath::conicTo(double x1, double y1, double x2, double y2, double w) { mutable_path().conicTo(SafeNarrow(x1), SafeNarrow(y1), SafeNarrow(x2), SafeNarrow(y2), SafeNarrow(w)); resetVolatility(); }
上述代码的第 2 行又调用了
SkPath
的SkPath& SkPath::conicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, SkScalar w)
方法,该方法代码实现如下:SkPath& SkPath::conicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, SkScalar w) { // check for <= 0 or NaN with this test if (!(w > 0)) { this->lineTo(x2, y2); } else if (!SkScalarIsFinite(w)) { this->lineTo(x1, y1); this->lineTo(x2, y2); } else if (SK_Scalar1 == w) { this->quadTo(x1, y1, x2, y2); } else { SkDEBUGCODE(this->validate();) this->injectMoveToIfNeeded(); SkPathRef::Editor ed(&fPathRef); SkPoint* pts = ed.growForVerb(kConic_Verb, w); pts[0].set(x1, y1); pts[1].set(x2, y2); (void)this->dirtyAfterEdit(); } return *this; }
从上述代码可知,我们
w
值的不同代码将执行不同的实现。 -
实例应用 在 Flutter 中该方法的应用实例如下所示:
void conicTo(Canvas canvas) { final Path path = Path(); path.moveTo(100, 100); path.conicTo(250, 10, 400, 100, 6); canvas.drawPath( path, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); final Path path1 = Path(); path1.moveTo(100, 100); path1.conicTo(250, 10, 400, 100, 1); canvas.drawPath( path1, Paint() ..color = Colors.red ..style = PaintingStyle.stroke ..strokeWidth = 2, ); final Path path2 = Path(); path2.moveTo(100, 100); path2.conicTo(250, 10, 400, 100, 0.5); canvas.drawPath( path2, Paint() ..color = Colors.green ..style = PaintingStyle.stroke ..strokeWidth = 2, ); final Path path3 = Path(); path3.moveTo(100, 100); path3.conicTo(250, 10, 400, 100, 0); canvas.drawPath( path3, Paint() ..color = Colors.orange ..style = PaintingStyle.stroke ..strokeWidth = 2, ); canvas.drawPoints( PointMode.points, const [Offset(100, 100), Offset(250, 10), Offset(400, 100)], Paint() ..color = Colors.green ..strokeWidth = 6, ); }
上述代码的运行效果如下:
上面视图已经标出不同的
w
值,显示不同的曲线。
4. void relativeConicTo(double x1, double y1, double x2, double y2, double w)
-
方法介绍 该方法的从当前点开始偏移
(x1,y1)
点为控制点,并以w
为权重,生成到当前点偏移(x2,y2)
点的曲线。注意: 当前点的偏移点也可以理解为以当前点为新的原点的点。
上述方法底层调用了
Path::relativeConicTo
方法,这个方法的实现代码如下:void CanvasPath::relativeConicTo(double x1, double y1, double x2, double y2, double w) { mutable_path().rConicTo(SafeNarrow(x1), SafeNarrow(y1), SafeNarrow(x2), SafeNarrow(y2), SafeNarrow(w)); resetVolatility(); }
上述方法第 6 行又调用了
SkPath
的SkPath& SkPath::rConicTo(SkScalar dx1, SkScalar dy1, SkScalar dx2, SkScalar dy2, SkScalar w)
方法,这个方法的代码实现如下:SkPath& SkPath::rConicTo(SkScalar dx1, SkScalar dy1, SkScalar dx2, SkScalar dy2, SkScalar w) { this->injectMoveToIfNeeded(); // This can change the result of this->getLastPt(). SkPoint pt; this->getLastPt(&pt); return this->conicTo(pt.fX + dx1, pt.fY + dy1, pt.fX + dx2, pt.fY + dy2, w); }
从上述代码的第 6 行可以看出,该方法是调用了
conicTo
方法,参数是当前点加上我们传入的参数。 -
实例应用 该方法在 Flutter 中的应用实例如下:
void relativeConicTo(Canvas canvas) { final Path path = Path(); path.moveTo(100, 200); path.relativeConicTo(100, -200, 200, 0, 2); canvas.drawPath( path, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); }
上述代码运行的效果如下:
上边只演示了
w=2
的情况,w
的其他情况和conicTo
的一样。
5. void arcTo(Rect rect, double startAngle, double sweepAngle, bool forceMoveTo)
-
方法介绍 该方法是在给定的矩形中创建一段内切椭圆的一段圆弧,如果参数
forceMoveTo
为true
则新起一段路径添加一段圆弧;如果为false
,则是直接添加一条线段和一段圆弧。该方法的底层实现如下:void arcTo(Rect rect, double startAngle, double sweepAngle, bool forceMoveTo) { assert(_rectIsValid(rect)); _arcTo(rect.left, rect.top, rect.right, rect.bottom, startAngle, sweepAngle, forceMoveTo); }
上述代码中的第 2 行,是判断传入的矩形是否为
null
以及 矩形是否可以表示出来。 上述代码第 3 行调用了void _arcTo( double left, double top, double right, double bottom, double startAngle, double sweepAngle, bool forceMoveTo)
方法,该方法又调用了Path::arcTo
方法,这个方法的底层实现如下:void CanvasPath::arcTo(double left, double top, double right, double bottom, double startAngle, double sweepAngle, bool forceMoveTo) { mutable_path().arcTo( SkRect::MakeLTRB(SafeNarrow(left), SafeNarrow(top), SafeNarrow(right), SafeNarrow(bottom)), SafeNarrow(startAngle) * 180.0f / static_cast<float>(M_PI), SafeNarrow(sweepAngle) * 180.0f / static_cast<float>(M_PI), forceMoveTo); resetVolatility(); }
上述方法的第 8 行,调用了
SkPath
的SkPath& SkPath::arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, bool forceMoveTo)
,该方法的底层实现如下:SkPath& SkPath::arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, bool forceMoveTo) { if (oval.width() < 0 || oval.height() < 0) { return *this; } startAngle = SkScalarMod(startAngle, 360.0f); if (fPathRef->countVerbs() == 0) { forceMoveTo = true; } SkPoint lonePt; if (arc_is_lone_point(oval, startAngle, sweepAngle, &lonePt)) { return forceMoveTo ? this->moveTo(lonePt) : this->lineTo(lonePt); } SkVector startV, stopV; SkRotationDirection dir; angles_to_unit_vectors(startAngle, sweepAngle, &startV, &stopV, &dir); SkPoint singlePt; // Adds a move-to to 'pt' if forceMoveTo is true. Otherwise a lineTo unless we're sufficiently // close to 'pt' currently. This prevents spurious lineTos when adding a series of contiguous // arcs from the same oval. auto addPt = [&forceMoveTo, this](const SkPoint& pt) { SkPoint lastPt; if (forceMoveTo) { this->moveTo(pt); } else if (!this->getLastPt(&lastPt) || !SkScalarNearlyEqual(lastPt.fX, pt.fX) || !SkScalarNearlyEqual(lastPt.fY, pt.fY)) { this->lineTo(pt); } }; // At this point, we know that the arc is not a lone point, but startV == stopV // indicates that the sweepAngle is too small such that angles_to_unit_vectors // cannot handle it. if (startV == stopV) { SkScalar endAngle = SkDegreesToRadians(startAngle + sweepAngle); SkScalar radiusX = oval.width() / 2; SkScalar radiusY = oval.height() / 2; // We do not use SkScalar[Sin|Cos]SnapToZero here. When sin(startAngle) is 0 and sweepAngle // is very small and radius is huge, the expected behavior here is to draw a line. But // calling SkScalarSinSnapToZero will make sin(endAngle) be 0 which will then draw a dot. singlePt.set(oval.centerX() + radiusX * SkScalarCos(endAngle), oval.centerY() + radiusY * SkScalarSin(endAngle)); addPt(singlePt); return *this; } SkConic conics[SkConic::kMaxConicsForArc]; int count = build_arc_conics(oval, startV, stopV, dir, conics, &singlePt); if (count) { this->incReserve(count * 2 + 1); const SkPoint& pt = conics[0].fPts[0]; addPt(pt); for (int i = 0; i < count; ++i) { this->conicTo(conics[i].fPts[1], conics[i].fPts[2], conics[i].fW); } } else { addPt(singlePt); } return *this; }
-
实例应用 在 Flutter 中该方法的应用实例如下:
void arcTo(Canvas canvas) { final Path path = Path(); path.moveTo(100, 100); path.arcTo(Rect.fromCenter(center: const Offset(400, 200), width: 300, height: 200), 0, pi, false); canvas.drawPath( path, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); }
上述代码在参数
forceMoveTo
为true
或者false
运行的视图结果如下:-
forceMoveTo = true
-
forceMoveTo = false
从上述可知,控制参数的不同可以获取不同的效果。 需要注意的是:
-
如果绘制没有设置绘制的起点,则
forceMoveTo
设置为false
时,底层实现也是按true
获取显示效果的。测试代码如下:void arcTo(Canvas canvas) { final Path path = Path(); // path.moveTo(100, 100); path.arcTo(Rect.fromCenter(center: const Offset(400, 200), width: 300, height: 200), 0, pi, false); canvas.drawPath( path, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); }
上面代码的运行视图效果如下:
看着这个图,是否很熟悉,这不是和有绘制起点同时
forceMoveTo
设置为true
的结果一样吗? 是的你没有看错。这是SkPath& SkPath::arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, bool forceMoveTo)
方法底层做了相关的处理,处理代码如下:if (fPathRef->countVerbs() == 0) { forceMoveTo = true; }
-
如果
sweepAngle = startAngle + 2k*pi
则绘制没有圆弧,测试代码如下:void arcTo(Canvas canvas) { final Path path = Path(); path.moveTo(100, 100); path.arcTo(Rect.fromCenter(center: const Offset(400, 200), width: 300, height: 200), 0, pi * 2, false); canvas.drawPath( path, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); }
上述代码运行效果如下:
-
6. void arcToPoint(Offset arcEnd, {Radius radius = Radius.zero,double rotation = 0.0,bool largeArc = false,bool clockwise = true,})
-
方法介绍 该方法是从路径的最后一个点到给定点绘制曲线,同时,它还有
radius
、rotation
、largeArc
、clockwise
四个参数可以自定义,以改变曲线的样式。该方法的底层代码如下:void arcToPoint( Offset arcEnd, { Radius radius = Radius.zero, double rotation = 0.0, bool largeArc = false, bool clockwise = true, }) { assert(_offsetIsValid(arcEnd)); assert(_radiusIsValid(radius)); _arcToPoint(arcEnd.dx, arcEnd.dy, radius.x, radius.y, rotation, largeArc, clockwise); }
上述方法的第 11 行,有调用了
Path::arcToPoint
方法,该方法的底层代码如下:void CanvasPath::arcToPoint(double arcEndX, double arcEndY, double radiusX, double radiusY, double xAxisRotation, bool isLargeArc, bool isClockwiseDirection) { const auto arcSize = isLargeArc ? SkPath::ArcSize::kLarge_ArcSize : SkPath::ArcSize::kSmall_ArcSize; const auto direction = isClockwiseDirection ? SkPathDirection::kCW : SkPathDirection::kCCW; mutable_path().arcTo(SafeNarrow(radiusX), SafeNarrow(radiusY), SafeNarrow(xAxisRotation), arcSize, direction, SafeNarrow(arcEndX), SafeNarrow(arcEndY)); resetVolatility(); }
上述方法的第 13 行又调用了
SkPath& SkPath::arcTo(SkScalar rx, SkScalar ry, SkScalar angle, SkPath::ArcSize arcLarge, SkPathDirection arcSweep, SkScalar x, SkScalar y)
方法,这个方法的底层实现如下:SkPath& SkPath::arcTo(SkScalar rx, SkScalar ry, SkScalar angle, SkPath::ArcSize arcLarge, SkPathDirection arcSweep, SkScalar x, SkScalar y) { this->injectMoveToIfNeeded(); SkPoint srcPts[2]; this->getLastPt(&srcPts[0]); // If rx = 0 or ry = 0 then this arc is treated as a straight line segment (a "lineto") // joining the endpoints. // http://www.w3.org/TR/SVG/implnote.html#ArcOutOfRangeParameters if (!rx || !ry) { return this->lineTo(x, y); } // If the current point and target point for the arc are identical, it should be treated as a // zero length path. This ensures continuity in animations. srcPts[1].set(x, y); if (srcPts[0] == srcPts[1]) { return this->lineTo(x, y); } rx = SkScalarAbs(rx); ry = SkScalarAbs(ry); SkVector midPointDistance = srcPts[0] - srcPts[1]; midPointDistance *= 0.5f; SkMatrix pointTransform; pointTransform.setRotate(-angle); SkPoint transformedMidPoint; pointTransform.mapPoints(&transformedMidPoint, &midPointDistance, 1); SkScalar squareRx = rx * rx; SkScalar squareRy = ry * ry; SkScalar squareX = transformedMidPoint.fX * transformedMidPoint.fX; SkScalar squareY = transformedMidPoint.fY * transformedMidPoint.fY; // Check if the radii are big enough to draw the arc, scale radii if not. // http://www.w3.org/TR/SVG/implnote.html#ArcCorrectionOutOfRangeRadii SkScalar radiiScale = squareX / squareRx + squareY / squareRy; if (radiiScale > 1) { radiiScale = SkScalarSqrt(radiiScale); rx *= radiiScale; ry *= radiiScale; } pointTransform.setScale(1 / rx, 1 / ry); pointTransform.preRotate(-angle); SkPoint unitPts[2]; pointTransform.mapPoints(unitPts, srcPts, (int) std::size(unitPts)); SkVector delta = unitPts[1] - unitPts[0]; SkScalar d = delta.fX * delta.fX + delta.fY * delta.fY; SkScalar scaleFactorSquared = std::max(1 / d - 0.25f, 0.f); SkScalar scaleFactor = SkScalarSqrt(scaleFactorSquared); if ((arcSweep == SkPathDirection::kCCW) != SkToBool(arcLarge)) { // flipped from the original implementation scaleFactor = -scaleFactor; } delta.scale(scaleFactor); SkPoint centerPoint = unitPts[0] + unitPts[1]; centerPoint *= 0.5f; centerPoint.offset(-delta.fY, delta.fX); unitPts[0] -= centerPoint; unitPts[1] -= centerPoint; SkScalar theta1 = SkScalarATan2(unitPts[0].fY, unitPts[0].fX); SkScalar theta2 = SkScalarATan2(unitPts[1].fY, unitPts[1].fX); SkScalar thetaArc = theta2 - theta1; if (thetaArc < 0 && (arcSweep == SkPathDirection::kCW)) { // arcSweep flipped from the original implementation thetaArc += SK_ScalarPI * 2; } else if (thetaArc > 0 && (arcSweep != SkPathDirection::kCW)) { // arcSweep flipped from the original implementation thetaArc -= SK_ScalarPI * 2; } // Very tiny angles cause our subsequent math to go wonky (skbug.com/9272) // so we do a quick check here. The precise tolerance amount is just made up. // PI/million happens to fix the bug in 9272, but a larger value is probably // ok too. if (SkScalarAbs(thetaArc) < (SK_ScalarPI / (1000 * 1000))) { return this->lineTo(x, y); } pointTransform.setRotate(angle); pointTransform.preScale(rx, ry); // the arc may be slightly bigger than 1/4 circle, so allow up to 1/3rd int segments = SkScalarCeilToInt(SkScalarAbs(thetaArc / (2 * SK_ScalarPI / 3))); SkScalar thetaWidth = thetaArc / segments; SkScalar t = SkScalarTan(0.5f * thetaWidth); if (!SkScalarIsFinite(t)) { return *this; } SkScalar startTheta = theta1; SkScalar w = SkScalarSqrt(SK_ScalarHalf + SkScalarCos(thetaWidth) * SK_ScalarHalf); auto scalar_is_integer = [](SkScalar scalar) -> bool { return scalar == SkScalarFloorToScalar(scalar); }; bool expectIntegers = SkScalarNearlyZero(SK_ScalarPI/2 - SkScalarAbs(thetaWidth)) && scalar_is_integer(rx) && scalar_is_integer(ry) && scalar_is_integer(x) && scalar_is_integer(y); for (int i = 0; i < segments; ++i) { SkScalar endTheta = startTheta + thetaWidth, sinEndTheta = SkScalarSinSnapToZero(endTheta), cosEndTheta = SkScalarCosSnapToZero(endTheta); unitPts[1].set(cosEndTheta, sinEndTheta); unitPts[1] += centerPoint; unitPts[0] = unitPts[1]; unitPts[0].offset(t * sinEndTheta, -t * cosEndTheta); SkPoint mapped[2]; pointTransform.mapPoints(mapped, unitPts, (int) std::size(unitPts)); /* Computing the arc width introduces rounding errors that cause arcs to start outside their marks. A round rect may lose convexity as a result. If the input values are on integers, place the conic on integers as well. */ if (expectIntegers) { for (SkPoint& point : mapped) { point.fX = SkScalarRoundToScalar(point.fX); point.fY = SkScalarRoundToScalar(point.fY); } } this->conicTo(mapped[0], mapped[1], w); startTheta = endTheta; } // The final point should match the input point (by definition); replace it to // ensure that rounding errors in the above math don't cause any problems. this->setLastPt(x, y); return *this; }
上面代码长度很长,我们可能对
c++
了解不多,所有去分析上面代码可能也收获不多。我们在实例应用
中采用图形结合的方式给大家介绍该方法用法和表现。 -
实例应用 该方法不同的参数有不同的表现形式,我们下面一一探究。首先我们先设定:
d
为路径最后一个点到arcEnd
点连线距离的一半;c
为路径最后一个点到arcEnd
点连线的中心;r
为设置的radius
参数。
下面我们介绍各个参数不同导致绘制的视图效果不同。
-
如果该方法只传递一个
arcEnd
参数,并且arcEnd
不等于路径的最后一个点,该方法将会展示一条从路径的最后一个点到arcEnd
点的直线。测试代码如下:void arcToPoint(Canvas canvas) { final Path path = Path(); path.moveTo(100, 200); path.arcToPoint(const Offset(200, 200)); canvas.drawPath( path, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); }
上述代码运行结果视图如下:
注意
- 在
arcEnd
等于路径的最后一个点
,该方法的视图表现是没有任何绘制。 - 该方法再不传递
Radius radius
参数时,该方法的视图表现是一条直线。
- 在
- 在
arcEnd
不等于路径的最后一个点时,同时设置radius
参数时,该方的视图表现受r
和d
的大小关系而影响。假如,-
r <= d
则方法的视图表现为以c
为圆点,以d
为半径,绘制的半圆。实例代码如下:void arcToPoint(Canvas canvas) { final Path path = Path(); path.moveTo(100, 200); path.arcToPoint(const Offset(200, 100), radius: const Radius.circular(10)); canvas.drawPath( path, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); }
上述代码运行视图结果如下:
-
当
r
>d
时 (假设:最后一个点为(x1,y1)
), 该函数表现的视图效果是以 (x1 + d, r2−d2\sqrt{r^2-d^2}r2−d2) 点为圆点,r
为半径的圆的圆弧的一段。 测试代码如下:void arcToPoint(Canvas canvas) { final Path path = Path(); path.moveTo(100, 200); path.arcToPoint(const Offset(200, 200), radius: const Radius.circular(100)); canvas.drawPath( path, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); }
上面代码运行视图如下:
上面图片紫色为函数绘制的曲线,红色是为了辅助了解添加的。
-
在方法中
largeArc
参数是设置视图绘制的是大弧还是小弧。该参数的视图效果,又受r
和d
的大小关系影响。-
如果
largeArc
为false
时, 当r
<=d
时,绘制的是半圆;当r
>d
时绘制的是一小段圆弧。测试代码如下:void arcToPoint(Canvas canvas) { final Path path = Path(); path.moveTo(100, 200); path.arcToPoint(const Offset(200, 200), radius: const Radius.circular(40), largeArc: false); canvas.drawPath( path, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); final Path path1 = Path(); path1.moveTo(400, 200); path1.arcToPoint(const Offset(500, 200), radius: const Radius.circular(60), largeArc: false); canvas.drawPath( path1, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); }
上面代码运行视图效果如下:
-
如果
largeArc
为true
时, 当r
<=d
时,绘制的是半圆;当r
>d
时绘制的是一大段圆弧。测试代码如下:void arcToPoint(Canvas canvas) { final Path path = Path(); path.moveTo(100, 200); path.arcToPoint(const Offset(200, 200), radius: const Radius.circular(40), largeArc: true); canvas.drawPath( path, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); final Path path1 = Path(); path1.moveTo(400, 200); path1.arcToPoint(const Offset(500, 200), radius: const Radius.circular(60), largeArc: true); canvas.drawPath( path1, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); }
上述代码运行的效果如下:
总结:该参数主要影响的是当
r > d
时, 如果largeArc = true
时, 绘制的是大弧,否则绘制的是小弧。 -
-
参数
clockwise
是设置绘制弧度的方向是顺时针还是逆时针。其实它很好理解,可以理解为clockwise
设置为true
或者false
它们的图案是沿着路径最后一个点到 arcEnd 点的连线对称
即可。 测试代码如下:void arcToPoint(Canvas canvas) { final Path path = Path(); path.moveTo(100, 200); path.arcToPoint(const Offset(200, 200), radius: const Radius.circular(40), largeArc: true, clockwise: true); canvas.drawPath( path, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); final Path path1 = Path(); path1.moveTo(400, 200); path1.arcToPoint(const Offset(500, 200), radius: const Radius.circular(60), largeArc: true, clockwise: true); canvas.drawPath( path1, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); final Path path2 = Path(); path2.moveTo(100, 200); path2.arcToPoint(const Offset(200, 200), radius: const Radius.circular(40), largeArc: true, clockwise: false); canvas.drawPath( path2, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); final Path path3 = Path(); path3.moveTo(400, 200); path3.arcToPoint(const Offset(500, 200), radius: const Radius.circular(60), largeArc: true, clockwise: false); canvas.drawPath( path3, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); }
上边代码运行视图效果如下:
-
rotation
参数,该方法的文档注释是绘制曲线旋转。经过测试发现无论怎么设置该参数都没有效果。经过底层代码查看,发现该参数在底层生成的变量没有使用,如下图所示:从上图黄色标记出看,该参数在底层代码只是生成一个
SkMatrix
变量,一直在设置起参数,最后就是没有使用,所以该参数无论怎么设置都没有效果。
-
-
7. void relativeArcToPoint(Offset arcEndDelta, {Radius radius = Radius.zero,double rotation = 0.0,bool largeArc = false,bool clockwise = true,})
-
方法介绍 该方法和
arcToPoint
方法基本一样,具体的细节和视图展示效果请查看arcToPoint
方法的介绍。 该方法的和arcToPoint
的唯一区别是该方法是以路径的最后一个点为新的原点,而arcToPoint
是以绘制(0,0)
点为原点。其实就是选择的参考点不一样而已。 -
实例应用 该方法在 Flutter 中的调用如下所示:
void relativeArcToPoint(Canvas canvas) { final Path path = Path(); path.moveTo(100, 200); path.lineTo(200, 200); path.relativeArcToPoint(const Offset(100, 100), radius: const Radius.circular(50)); canvas.drawPath( path, Paint() ..color = Colors.purple ..style = PaintingStyle.stroke ..strokeWidth = 2, ); }
上述代码运行的视图效果如下:
三、 鼓励和建议
这是 Flutter 绘制路径 Path 的全部方法介绍
的第二篇文章,由于文章篇幅越来越长,影响阅读效果,所以到此终止,我们将将剩余的方法放置到第三篇文章中,大家请继续关注。如果感觉写的还可以,请留下你的爱心或者评论。本篇文章使用的测试 Demo 地址 Path Demo, 欢迎下载。
转载自:https://juejin.cn/post/7267723121037017088