likes
comments
collection
share

实践|使用 RisingWave、NATS JetStream 和 Superset 进行实时物联网监控

作者站长头像
站长
· 阅读数 37

在物联网(IoT)背景下,处理实时数据会遇到一些特定的障碍,如边缘计算资源不足、网络条件限制、扩展性存在问题、设备间有多样性差异等。要克服这些挑战,需要高效的边缘计算技术、强大的安全措施、标准化协议、可扩展的管理系统和先进的数据处理能力。

通过综合利用 NATS JetStream、RisingWave 和 Superset,可以构建一个强大的解决方案,用于开发可靠且可扩展的实时物联网应用。

RisingWave是与 PostgreSQL 兼容的流数据库,具有成本效益、可扩展性和真正的云原生架构。它允许用户使用 SQL 从流数据中获取实时见解,易于设置、使用和操作。

NATS 是一种安全连接技术,设计用于在分布式系统中发现和交换信息。它可以部署在任何环境中,用于微服务、数据流和物联网等不同用例,支持边缘设备,可使用多种语言和客户端进行交互。JetStream 构建在 NATS 之上,支持消息流的持久化。

Apache Superset 是一个现代化数据探索和数据可视化平台。它是一款开源软件,可以取代或增强许多团队的专有商业智能工具。

1. 概述

本文将深入探讨一个物联网场景,重点关注通过物联网传感器监控温度和湿度数据。我们将探讨 NATS JetStream 如何使边缘设备能够轻松将数据流传输到 RisingWave 并进行实时处理。通过窗口操作和聚合,RisingWave 可以高效地对数据进行高级分析。最后,我们将使用 Superset 创建表、图表和集成看板,对处理和分析的数据进行可视化。

实践|使用 RisingWave、NATS JetStream 和 Superset 进行实时物联网监控

2. 设置 NATS JetStream

NATS 服务器经过高度优化,其二进制文件不到 20 MB,使其可以轻松在各种机器上运行。无论是在 Raspberry Pi 还是规模宏大的服务器上,也无论是在云端、本地、边缘、裸机、虚拟机还是在容器中,均可轻松运行。

您可以使用 Docker 安装 NATS JetStream,如下所示:

docker pull nats:latest

要在 Docker 上运行 NATS JetStream,可以使用 -js Flag 启动 NATS 服务器。此 Flag 可启用 JetStream 功能,使您能够充分利用其各项功能。

docker run -p 4222:4222 -ti nats:latest -js

该 Docker 命令可启动 NATS JetStream。现在,您可以通过各种语言和客户端发布和订阅信息。

实践|使用 RisingWave、NATS JetStream 和 Superset 进行实时物联网监控

3. 向 JetStream 发布数据

在此示例中,我们使用 iot_data 主题将物联网数据发布到 JetStream 的 Stream event_stream 中。下面是正在发布的数据示例:

'{"device_Id":"sensor1","temperature":25,"ts":"2023-01-05 05:50:00+00:00"},
'{"device_Id":"sensor1","temperature":26,"ts":"2023-01-05 05:50:01+00:00"}'
'{"device_Id":"sensor2","humidity":60,"ts":"2023-01-05 05:50:01+00:00"}'
'{"device_Id":"sensor1","temperature":27,"ts":"2023-01-05 05:50:02+00:00"}'
'{"device_Id":"sensor2","humidity":62,"ts":"2023-01-05 05:50:02+00:00"}'

4. 从 RisingWave 摄取 JetStream 的数据

我们可以使用开源 RisingWave 或托管服务(RisingWave Cloud)来摄取和处理流数据。本文将使用 RisingWave Cloud,它能够提供良好的用户体验,简化管理和使用 RisingWave 进行物联网监控的操作。

4.1 创建 RisingWave 集群

使用免费计划在 RisingWave Cloud 中创建 RisingWave 集群。有关说明,请参阅 RisingWave Cloud 文档。

实践|使用 RisingWave、NATS JetStream 和 Superset 进行实时物联网监控

4.2 在RisingWave 中创建 Source 以摄取数据流

在 RisingWave 中创建 Source,以便从先前设置的 iot_data 主题的 Stream event_stream 中摄取数据。在此示例中,RisingWave 充当 NATS JetStream 的 Stream 和主题的订阅者。

请注意,RisingWave 中带有连接器设置的 Source 会与 Stream 建立连接,但不会持久化流数据。

CREATE SOURCE iot_source(
  device_Id VARCHAR,
  temperature VARCHAR,
  humidity VARCHAR,
  ts TIMESTAMPTZ
)
WITH (
  connector='nats',
  server_url='nats://8.210.9.253:4222',
  subject='iot_data',
  stream='event_stream',
  connect_mode='plain'
)FORMAT PLAIN ENCODE JSON;

5. 在 RisingWave 中进行分析

现在,我们根据名为 iot_source 的 Source 创建一个名为 iot_mv 的物化视图,用于存储传入的数据并进行分析。

CREATE MATERIALIZED VIEW iot_mv AS
SELECT 
    device_Id, 
    temperature,
    humidity,
    ts 
FROM iot_source;

可以使用以下 SQL 语句查询结果。

SELECT 
    device_Id, 
    temperature,
    ts 
from iot_mv
WHERE deviceId ='sensor1'
limit 5;

下面是一个结果示例。

device_id  | temperature |               ts               
----------+-------------+-------------------------------
 sensor1  |          25 | 2023-01-05 05:50:00+00:00
 sensor1  |          26 | 2023-01-05 05:50:01+00:00
 sensor1  |          27 | 2023-01-05 05:50:03+00:00
 sensor1  |          28 | 2023-01-05 05:50:05+00:00
 sensor1  |          29 | 2023-01-05 05:50:07+00:00

可以使用以下 SQL 语句查询结果。

SELECT 
    device_Id, 
    humidity,
    ts 
from iot_mv
WHERE deviceId ='sensor2'
limit 5;
| device_id | humidity |                    ts                    
|----------|----------|------------------------------------------
| sensor2  |    60    | 2023-01-05 05:50:02+00:00 
| sensor2  |    62    | 2023-01-05 05:50:04+00:00 
| sensor2  |    65    | 2023-01-05 05:50:06+00:00 
| sensor2  |    68    | 2023-01-05 05:50:08+00:00 
| sensor2  |    70    | 2023-01-05 05:50:10+00:00 

下面的语句可创建一个名为 avg_temperature_mv 的物化视图,用于根据时间戳 ts 计算指定设备 sensor1 在 1 分钟 Tumbling 窗口内的平均温度。结果包括设备 ID、平均温度、窗口开始和窗口结束的列。

CREATE MATERIALIZED VIEW avg_temperature_mv AS
SELECT device_Id, AVG(temperature) AS avg_temperature
window_start, window_end
FROM TUMBLE (iot_mv, ts, INTERVAL '1 MINUTES')
WHERE device_Id ='sensor1'
GROUP BY device_Id,window_start, window_end;

可以使用以下 SQL 语句查询结果。

SELECT * FROM avg_temperature_mv LIMIT 5;

下面是一个结果示例。

| device_id | avg_temperature  |        window_start        |          window_end           
|----------|------------------|----------------------------|--------------------------
| sensor1  |        41        | 2023-01-05T05:56:00Z       | 2023-01-05T05:57:00Z 
| sensor1  |        40        | 2023-01-05T05:50:00Z       | 2023-01-05T05:51:00Z 
| sensor1  |        38        | 2023-01-05T05:55:00Z       | 2023-01-05T05:56:00Z 
| sensor1  |        35        | 2023-01-05T05:54:00Z       | 2023-01-05T05:55:00Z 
| sensor1  |        55        | 2023-01-05T06:01:00Z       | 2023-01-05T06:02:00Z 

同样,下面的语句可创建一个名为 avg_humidity_mv 的物化视图,用于根据时间戳 ts 计算指定设备 sensor2 在 1 分钟 Tumbling 窗口内的平均湿度。结果包括设备 ID、平均湿度、窗口开始和窗口结束的列。

CREATE MATERIALIZED VIEW avg_humidity_mv AS
SELECT device_Id, AVG(humidity) AS avg_humidity
window_start, window_end
FROM TUMBLE (iot_mv, ts, INTERVAL '1 MINUTES')
WHERE device_Id ='sensor2'
GROUP BY device_Id,window_start, window_end;  

可以使用以下 SQL 语句查询结果。

SELECT * FROM avg_humidity_mv LIMIT 5;

下面是一个结果示例。

| device_Id | avg_humidity |        window_start         |          window_end           
|----------|--------------|-----------------------------|-------------------------------
| sensor2  |   112.33     | 2023-01-05T05:58:00Z | 2023-01-05T05:59:00Z |
| sensor2  |      75      | 2023-01-05T05:53:00Z | 2023-01-05T05:54:00Z |
| sensor2  |      90      | 2023-01-05T05:55:00Z | 2023-01-05T05:56:00Z |
| sensor2  |      95      | 2023-01-05T05:50:00Z | 2023-01-05T05:51:00Z |
| sensor2  |     105      | 2023-01-05T05:57:00Z | 2023-01-05T05:58:00Z |

6. 在 Apache Superset 中可视化数据

我们将配置 Superset,以便从 RisingWave 读取数据并进行可视化。

6.1 将 RisingWave 连接到 Superset

可以在 Apache Superset 中将 RisingWave 作为数据源,使用 RisingWave 中的表和物化视图进行可视化和创建看板。要了解该过程,请按照 配置 Superset 从 RisingWave 读取数据 一文中的说明进行操作。

成功将 RisingWave 连接到 Apache Superset 后,我们可将 RisingWave 中的物化视图添加为数据集,以创建表、各种图表和综合看板。

6.2 使用 Apache Superset 可视化数据:表、图表和看板

此表由 iot_mv 数据集生成,显示温度传感器 ID、温度读数以及每个读数相应的时间戳等信息。

实践|使用 RisingWave、NATS JetStream 和 Superset 进行实时物联网监控

此表也由 iot_mv 数据集生成,显示湿度传感器 ID、湿度读数以及每个读数相应的时间戳等详细信息。它全面展示了在 iot_mv 物化视图中捕获和存储的湿度数据。

实践|使用 RisingWave、NATS JetStream 和 Superset 进行实时物联网监控

此条形图由 avg_temperature_mv 数据集生成,显示了温度传感器在预定义的 1 分钟时间窗口内获取的平均温度。

实践|使用 RisingWave、NATS JetStream 和 Superset 进行实时物联网监控

此折线图由 avg_humidity_mv 数据集生成,显示了湿度传感器在指定的 1 分钟时间窗口内获取的平均湿度。

实践|使用 RisingWave、NATS JetStream 和 Superset 进行实时物联网监控

此综合看板呈现了一系列图表,有助于全面实时监控物联网设备。通过对每个相应时间戳的温度和湿度传感器读数进行深入分析,获取有价值的见解,使用户能够做出明智的决策,并实现对工业物联网设备的有效监控。

实践|使用 RisingWave、NATS JetStream 和 Superset 进行实时物联网监控

7. 总结

本文介绍了如何利用 NATS JetStream、RisingWave 和 Superset 构建实时物联网监控解决方案。以上三个系统的设置过程简单省力,资源效率高且具有强大的可扩展性,是实时物联网应用的理想组合。通过三者的无缝集成,不到一小时即可创建一个实时物联网看板。简而言之,这展示了物联网设备背景下 NATS JetStream、RisingWave 和 Apache Superset 在工业流程中的无缝集成,并通过可视化和看板实现了实时分析和监控。

8. 关于 RisingWave

转载自:https://juejin.cn/post/7350652060872097801
评论
请登录