使用 scikit-learn 进行多分类
大家好,我是小寒。
scikit-learn 是用 Python 构建机器学习最常用的库之一。它的受欢迎程度可归因于其简单且一致的代码结构,这对初学者很友好。
该库包含多个用于分类、回归和聚类的机器学习模型。
在本文中,我们将通过各种算法探索多类分类问题。让我们深入研究并构建我们的 scikit-learn 模型。
安装 scikit-learn 库
pip install scikit-learn
加载数据集
使用 scikit-learn 自带的 “Wine” 数据集。该数据集共有 178 个样本和 3 个类别。
切分训练和测试数据
保留 67% 的数据用于训练,其余 33% 用于测试。
我们将试验 5 种不同复杂度的模型,并在我们的数据集上评估它们的结果。
训练模型
逻辑回归
KNN
朴素贝叶斯
决策树
随机森林
在这个算法中,我们进行了一些超参数调整以达到最佳精度。
我们定义了一个参数网格,其中包含多个值供每个参数选择。
此外,我们使用随机搜索算法来搜索模型的最佳参数空间。
最后,我们将获得的参数提供给分类器并训练模型。
转载自:https://juejin.cn/post/7185415699257851965