验证码识别captcha_trainer使用demo
验证码生成captcha
若想生成不带不带干扰元素的验证码,ctrl键+鼠标左键点击ImageCaptcha(),进入image.py文件。找到
self.create_noise_dots(im, color)
self.create_noise_curve(im, color)
生成tfrecord格式文件
captcha_trainer需要两个参数input、label
from typing import List
import tensorflow as tf
import os
# def _bytes_feature(value):
# return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value.encode('utf-8') if type(value)==str else value]))
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def bytes_list_feature(value: List[bytes]):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
def int64_feature(value: int):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def int64_list_feature(value: List[int]):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def float_feature(value: float):
return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
def float_list_feature(value: List[float]):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def create_tfrecords(directory, output_file):
writer = tf.io.TFRecordWriter(output_file)
for root, dirs, files in os.walk(directory):
for file in files:
labels=file.split('_')[0]
num_labels = []
for j in range(4):
num_labels.append(int(labels[j]))
filepath = os.path.join(root, file)
# 读取文件数据
with open(filepath, 'rb') as f:
data = f.read()
# 创建Example对象 captcha_trainer 需要连个参数input、label
feature = {
# image 数据
"input": tf.train.Feature(bytes_list=tf.train.BytesList(value=[data])),
# 长、宽、通道数
"height": tf.train.Feature(int64_list=tf.train.Int64List(value=[60])),
"width": tf.train.Feature(int64_list=tf.train.Int64List(value=[160])),
"channels": tf.train.Feature(int64_list=tf.train.Int64List(value=[3])),
# label 这里是字符串
"label": _bytes_feature(labels),
}
example = tf.train.Example(features=tf.train.Features(feature=feature))
# 写入TFRecord文件
writer.write(example.SerializeToString())
writer.close()
# 示例目录和输出文件路径
directory = 'D:/BaiduNetdiskDownload/test_captcha/img1/'
output_file = 'D:/BaiduNetdiskDownload/test_captcha/trains.0.tfrecords'
#directory = 'D:/BaiduNetdiskDownload/test_captcha/img2/'
#output_file = 'D:/BaiduNetdiskDownload/test_captcha/valids.0.tfrecords'
# 创建TFRecord文件
create_tfrecords(directory, output_file)
captcha_trainer配置
拉取代码: git clone github.com/kerlomz/cap…
处理配置文件,根据readme说明处理就行了。
执行训练
python trains.py 项目名
生成模型测试
muggle_ocr测试
pip那个包没有直接安装不了
github安装
pip install git+https://github.com/litongjava/muggle_ocr.git
下载后安装
pip install 文件名.whl
python setup.py install
import muggle_ocr
from PIL import Image
import numpy as np
import init_util
init_util.set_GPU()
yaml_path = r'model.yaml'
image_test=r'3.jpg'
sdk = muggle_ocr.SDK(model_type=muggle_ocr.ModelType.Captcha,conf_path=yaml_path)
#sdk = muggle_ocr.SDK(model_type=muggle_ocr.ModelType.Captcha)
with open(image_test, "rb") as f:
image_binary = f.read()
text = sdk.predict(image_bytes=image_binary)
print(text)
用上面是识别成功的,但我想自己加载pb文件验证识别但没有成功(后面有时间了在研究下
注意两个输入、输出参数名
def grphPB():
# 加载模型
with tf.io.gfile.GFile(MODEL_PATH+'/test_captcha_9000.pb', 'rb') as f:
graph_def = tf.compat.v1.GraphDef()
graph_def.ParseFromString(f.read())
with tf.compat.v1.Session() as sess:
# 加载图定义
sess.graph.as_default()
tf.import_graph_def(graph_def, name='')
# 获取输入和输出节点
input_node = sess.graph.get_tensor_by_name('input:0')
output_node = sess.graph.get_tensor_by_name('dense_decoded:0')
# 进行预测
image = init_util.preprocess_image(IMAGE_PATH)
predictions = sess.run(output_node, feed_dict={input_node: image})
print(predictions)
转载自:https://juejin.cn/post/7352387642845511720