PTA 树的同构
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
图1
图2
现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
输出样例1:
Yes
输入样例2(对应图2):
8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No
代码:
#include<iostream>
using namespace std;
#define MAXN 100
struct Node
{
char ch;
int left;
int right;
}tree1[MAXN], tree2[MAXN];
int n;
int build(struct Node tree[])
{
cin >> n;
char st, l, r;
for (int i = 0; i < n; i++)
{
getchar();//吸收回车
cin >> st;
getchar();//吸收空格
cin >> l;
getchar();//吸收空格
cin >> r;
// cout<<st<<" "<<l<<" "<<r<<endl;
tree[i].ch = st;
if (l == '-')
{
tree[i].left = -11; //-11代表为空NULL
}
else
{
tree[i].left = l - '0';
}
if (r == '-')
{
tree[i].right = -11; //-11代表为空NULL
}
else
{
tree[i].right = r - '0';
}
}
}
bool judge(struct Node treeA[], struct Node treeB[])
{
if (n == 1)
{
if (treeA[0].ch == treeB[0].ch)
{
return true;
}
else return false;
}
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
if (treeA[i].ch == treeB[j].ch)
{
if (treeA[i].left == -11 && treeA[i].right == -11 && treeB[j].left == -11 && treeB[j].right == -11) //两个子节点都为空
{
break;
}
if (treeA[i].left == -11 && treeA[i].right != -11) //A左空右不空
{
if ((treeB[j].left != -11 && treeB[j].right != -11) || (treeB[j].left == -11 && treeB[j].right == -11))
{
return false;
}
if ((treeB[j].left == -11 && treeB[j].right != -11))
{
if (treeA[treeA[i].right].ch == treeB[treeB[j].right].ch)
{
break;
}
else return false;
}
if ((treeB[j].left != -11 && treeB[j].right == -11))
{
if (treeA[treeA[i].right].ch == treeB[treeB[j].left].ch)
{
break;
}
else return false;
}
}
if (treeA[i].left != -11 && treeA[i].right == -11) //A左不空右空
{
if ((treeB[j].left != -11 && treeB[j].right != -11) || (treeB[j].left == -11 && treeB[j].right == -11))
{
return false;
}
if ((treeB[j].left == -11 && treeB[j].right != -11))
{
if (treeA[treeA[i].left].ch == treeB[treeB[j].right].ch)
{
break;
}
else return false;
}
if ((treeB[j].left != -11 && treeB[j].right == -11))
{
if (treeA[treeA[i].left].ch == treeB[treeB[j].left].ch)
{
break;
}
else return false;
}
}
if (treeA[i].left != -11 && treeA[i].right != -11)
{
if ((treeB[j].left == -11 && treeB[j].right == -11) || (treeB[j].left != -11 && treeB[j].right == -11) || (treeB[j].left == -11 && treeB[j].right != -11))
{
return false;
}
else
{
if (((treeA[treeA[i].left].ch == treeB[treeB[j].left].ch) && (treeA[treeA[i].right].ch == treeB[treeB[j].right].ch)) || ((treeA[treeA[i].left].ch == treeB[treeB[j].right].ch) && (treeA[treeA[i].right].ch == treeB[treeB[j].left].ch)))
{
break;
}
else return false;
}
}
}
}
}
return true;
}
int main()
{
build(tree1);
build(tree2);
if (judge(tree1, tree2))
{
cout << "Yes" << endl;
}
else cout << "No" << endl;
}
提交结果:
转载自:https://juejin.cn/post/7028092292384686087