leetcode 2360. Longest Cycle in a Graph (python)
描述
You are given a directed graph of n nodes numbered from 0 to n - 1, where each node has at most one outgoing edge.
The graph is represented with a given 0-indexed array edges of size n, indicating that there is a directed edge from node i to node edges[i]. If there is no outgoing edge from node i, then edges[i] == -1.
Return the length of the longest cycle in the graph. If no cycle exists, return -1.
A cycle is a path that starts and ends at the same node.
Example 1:
Input: edges = [3,3,4,2,3]
Output: 3
Explanation: The longest cycle in the graph is the cycle: 2 -> 4 -> 3 -> 2.
The length of this cycle is 3, so 3 is returned.
Example 2:
Input: edges = [2,-1,3,1]
Output: -1
Explanation: There are no cycles in this graph.
Note:
n == edges.length
2 <= n <= 10^5
-1 <= edges[i] < n
edges[i] != i
解析
根据题意,给定一个从 0 到 n - 1 编号的 n 个节点的有向图,其中每个节点最多有一个出边。 该图用给定的大小为 n 的 0 索引数组 edges 来表示,表示从节点 i 到节点 edges[i] 有一条有向边。 如果没有出边,则 edges[i] == -1。该图用给定的大小为 n 的 0 索引数组 edges 表示,表示从节点 i 到节点 edges[i] 有一条有向边。 如果没有出边,则 edges[i] == -1。
返回图中最长环的长度。 如果不存在循环,则返回-1。环是在同一节点开始和结束的路径。
我们先用字典 d 找出路每个节点的下一个节点,定义 memo 来记录已经遍历过的节点,然后使用 BFS 来依次从 0 节点开始找可能存在的环的长度,并不断更新最后的结果 result ,遍历完所有的节点之后返回 result 即可。
时间复杂度为 O(N) ,空间复杂度为 O(N) 。
解答
class Solution(object):
def longestCycle(self, edges):
"""
:type edges: List[int]
:rtype: int
"""
d = collections.defaultdict(list)
for i, val in enumerate(edges):
if val != -1:
d[i].append(val)
memo = dict()
result = -1
for i in range(len(edges)):
if i in memo:
continue
memo[i] = (i, 0) # destination: (starting, distance)
stack = [(i, 0)]
while stack:
for _ in range(len(stack)):
curr, dis = stack.pop(0)
for nxt in d[curr]:
if nxt in memo:
if memo[nxt][0] == i:
result = max(result, dis - memo[nxt][1] + 1)
else:
memo[nxt] = (i, dis + 1)
stack.append((nxt, dis + 1))
return result
运行结果
72 / 72 test cases passed.
Status: Accepted
Runtime: 2761 ms
Memory Usage: 63 MB
原题链接
assets.leetcode.com/uploads/202…
您的支持是我最大的动力
转载自:https://juejin.cn/post/7127451698389319694