高频写入redis场景优化
前言
工作中经常遇到要对redis进行高频写入,但是对于读取时数据的实时性要求又不高的场景。为了优化性能,决定采用本地缓存一部分数据整合后写入。
依赖
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>19.0-rc2</version>
</dependency>
基础类
public class BufferCache implements Closeable {
// CacheBuilder的构造函数是私有的,只能通过其静态方法newBuilder()来获得CacheBuilder的实例
private Cache localCacheData;
private static int maxItemSize = 1000;
private static String key = "defaultKey";
private static final Object lock = new Object();
public BufferCache(String key, int currencyLevel, int writeExpireTime,
int accessExpireTime, int initialCapacity, int maximumSize,
int maxItemSize, RemovalListener removalListener) {
currencyLevel = currencyLevel < 1 ? 1 : currencyLevel;
initialCapacity = initialCapacity < 100 ? 100 : initialCapacity;
if (key!=null&&key.isEmpty()) {
BufferCache.key = key;
}
BufferCache.maxItemSize = maxItemSize;
localCacheData = CacheBuilder.newBuilder()
// 设置并发级别为8,并发级别是指可以同时写缓存的线程数
.concurrencyLevel(currencyLevel)
// 设置写缓存后expireTime秒钟过期
.expireAfterWrite(writeExpireTime, TimeUnit.SECONDS)
// 设置请求后expireTime秒钟过期
.expireAfterAccess(accessExpireTime, TimeUnit.SECONDS)
// 设置缓存容器的初始容量为10
.initialCapacity(initialCapacity)
// 设置缓存最大容量为Integer.MAX_VALUE,超过Integer.MAX_VALUE之后就会按照LRU最近虽少使用算法来移除缓存项
.maximumSize(maximumSize)
// 设置要统计缓存的命中率
.recordStats()
// 设置缓存的移除通知
.removalListener(removalListener)
// build方法中可以指定CacheLoader,在缓存不存在时通过CacheLoader的实现自动加载缓存
.build();
Runtime.getRuntime().addShutdownHook(
new Thread(() -> localCacheData.invalidate(key)));
}
public void addListSync(String key, Object value) {
synchronized (lock) {
List<Object> gs = (List<Object>) localCacheData.getIfPresent(key);
if (gs == null) {
gs = new ArrayList<>();
}
gs.add(value);
localCacheData.put(key, gs);
// 如果队列长度超过设定最大长度则清除key
if (gs.size() > maxItemSize) {
localCacheData.invalidate(key);
}
}
}
public void addListSync(Object value) {
addListSync(BufferCache.key, value);
}
@Override
public void close() {
localCacheData.invalidate(key);
}
}
采用 google 的 cache,利用其监听事件(详见 com.google.common.cache.RemovalCause 类)触发写入redis操作,addListSync方法中使用 synchronized 进行加锁,防止高并发场景下List数据错误。
新建配置文件
cache.key=name
cache.currencyLevel=1
cache.writeExpireTime=900
cache.accessExpireTime=600
cache.initialCapacity=1
cache.maximumSize=1000
cache.maxItemSize=1000
针对不同业务场景可以自定义不同的配置参数
业务实现
@Configuration
@ConditionalOnResource(resources = "bufferCache.properties")
@PropertySource(value = "bufferCache.properties", ignoreResourceNotFound = true)
public class CacheConfig implements ApplicationContextAware {
private ApplicationContext ctx;
@Bean("buffCache")
@ConditionalOnProperty(prefix = "cache", value = "currencyLevel")
public BufferCache guildBuffCache(@Value("${cache.key}") String key,
@Value("${cache.currencyLevel}") int currencyLevel,
@Value("${cache.writeExpireTime}") int writeExpireTime,
@Value("${cache.accessExpireTime}") int accessExpireTime,
@Value("${cache.initialCapacity}") int initialCapacity,
@Value("${cache.maximumSize}") int maximumSize,
@Value("${cache.maxItemSize}") int maxItemSize) {
// 异步监听
RemovalListener<String, List<GuildActiveEventEntity>> async = RemovalListeners
.asynchronous(new MyRemovalListener(),
ExecutorServiceUtil.getExecutorServiceByType(
ExecutorServiceUtil.ExecutorServiceType.BACKGROUND));
return new BufferCache(key, currencyLevel, writeExpireTime,
accessExpireTime, initialCapacity, maximumSize, maxItemSize,
async);
}
@Override
public void setApplicationContext(ApplicationContext applicationContext)
throws BeansException {
ctx = applicationContext;
}
// 创建一个监听器
private class MyRemovalListener
implements RemovalListener<String, List<GuildActiveEventEntity>> {
@Override
public void onRemoval(
RemovalNotification<String, List<GuildActiveEventEntity>> notification) {
RemovalCause cause = notification.getCause();
// 当超出缓存队列限制大小时或者key过期或者主动清除key时更新数据
if (cause.equals(RemovalCause.SIZE)
|| cause.equals(RemovalCause.EXPIRED)
|| cause.equals(RemovalCause.EXPLICIT)) {
//根据不同业务场景调用不同业务方法进行写入操作
}
}
}
}
此类实现 ApplicationContextAware 为了获取指定业务方法 Bean ,进行解析缓存中value模型后进行存储。 在以上几个步骤都完成后,只需在业务层声名
@Autowired
private BufferCache buffCache;
调用其addListSync方法即可。
总结
总体思路是使用本地缓存去分担高频写的压力,此方法其实不仅仅适用与redis的写入,还可用于其他场景,具体使用方法可以按照业务场景自己扩展。
转载自:https://juejin.cn/post/6844903733000683528