【源码】LinkedHashMap源码
1、LinkedHashMap 定义
LinkedHashMap 是基于 HashMap 实现的一种集合,具有 HashMap 集合上面所说的所有特点,除了 HashMap 无序的特点,LinkedHashMap 是有序的,因为 LinkedHashMap 在 HashMap 的基础上单独维护了一个具有所有数据的双向链表,该链表保证了元素迭代的顺序。
所以我们可以直接这样说:LinkedHashMap = HashMap + LinkedList。LinkedHashMap 就是在 HashMap 的基础上多维护了一个双向链表,用来保证元素迭代顺序。
更形象化的图形展示可以直接移到文章末尾。
public class LinkedHashMap<K,V>
extends HashMap<K,V>
implements Map<K,V>
2、字段属性
①、Entry<K,V>
static class Entry<K,V> extends HashMap.Node<K,V> {
Entry<K,V> before, after;
Entry(int hash, K key, V value, Node<K,V> next) {
super(hash, key, value, next);
}
}
LinkedHashMap 的每个元素都是一个 Entry,我们看到对于 Entry 继承自 HashMap 的 Node 结构,相对于 Node 结构,LinkedHashMap 多了 before 和 after 结构。
下面是Map类集合基本元素的实现演变。
LinkedHashMap 中 Entry 相对于 HashMap 多出的 before 和 after 便是用来维护 LinkedHashMap 插入 Entry 的先后顺序的。
②、其它属性
//用来指向双向链表的头节点
transient LinkedHashMap.Entry<K,V> head;
//用来指向双向链表的尾节点
transient LinkedHashMap.Entry<K,V> tail;
//用来指定LinkedHashMap的迭代顺序
//true 表示按照访问顺序,会把访问过的元素放在链表后面,放置顺序是访问的顺序
//false 表示按照插入顺序遍历
final boolean accessOrder;
注意:这里有五个属性别搞混淆的,对于 Node next 属性,是用来维护整个集合中 Entry 的顺序。对于 Entry before,Entry after ,以及 Entry head,Entry tail,这四个属性都是用来维护保证集合顺序的链表,其中前两个before和after表示某个节点的上一个节点和下一个节点,这是一个双向链表。后两个属性 head 和 tail 分别表示这个链表的头节点和尾节点。
PS:关于双向链表的介绍,可以看这篇博客。
3、构造函数
①、无参构造
public LinkedHashMap() {
super();
accessOrder = false;
}
调用无参的 HashMap 构造函数,具有默认初始容量(16)和加载因子(0.75)。并且设定了 accessOrder = false,表示默认按照插入顺序进行遍历。
②、指定初始容量
public LinkedHashMap(int initialCapacity) {
super(initialCapacity);
accessOrder = false;
}
③、指定初始容量和加载因子
public LinkedHashMap(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor);
accessOrder = false;
}
④、指定初始容量和加载因子,以及迭代规则
public LinkedHashMap(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}
⑤、构造包含指定集合中的元素
public LinkedHashMap(Map<? extends K, ? extends V> m) {
super();
accessOrder = false;
putMapEntries(m, false);
}
上面所有的构造函数默认 accessOrder = false,除了第四个构造函数能够指定 accessOrder 的值。
4、添加元素
LinkedHashMap 中是没有 put 方法的,直接调用父类 HashMap 的 put 方法。关于 HashMap 的put 方法,可以参看 HashMap源码
我将方法介绍复制到下面:
//hash(key)就是上面讲的hash方法,对其进行了第一步和第二步处理
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
/**
*
* @param hash 索引的位置
* @param key 键
* @param value 值
* @param onlyIfAbsent true 表示不要更改现有值
* @param evict false表示table处于创建模式
* @return
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果table为null或者长度为0,则进行初始化
//resize()方法本来是用于扩容,由于初始化没有实际分配空间,这里用该方法进行空间分配,后面会详细讲解该方法
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//注意:这里用到了前面讲解获得key的hash码的第三步,取模运算,下面的if-else分别是 tab[i] 为null和不为null
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);//tab[i] 为null,直接将新的key-value插入到计算的索引i位置
else {//tab[i] 不为null,表示该位置已经有值了
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;//节点key已经有值了,直接用新值覆盖
//该链是红黑树
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//该链是链表
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//链表长度大于8,转换成红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//key已经存在直接覆盖value
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;//用作修改和新增快速失败
if (++size > threshold)//超过最大容量,进行扩容
resize();
afterNodeInsertion(evict);
return null;
}
这里主要介绍上面方法中,为了保证 LinkedHashMap 的迭代顺序,在添加元素时重写了的4个方法,分别是第23行、31行以及53、60行代码:
newNode(hash, key, value, null);
putTreeVal(this, tab, hash, key, value)//newTreeNode(h, k, v, xpn)
afterNodeAccess(e);
afterNodeInsertion(evict);
①、对于 newNode(hash,key,value,null) 方法
HashMap.Node<K,V> newNode(int hash, K key, V value, HashMap.Node<K,V> e) {
LinkedHashMap.Entry<K,V> p =
new LinkedHashMap.Entry<K,V>(hash, key, value, e);
linkNodeLast(p);
return p;
}
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
//用临时变量last记录尾节点tail
LinkedHashMap.Entry<K,V> last = tail;
//将尾节点设为当前插入的节点p
tail = p;
//如果原先尾节点为null,表示当前链表为空
if (last == null)
//头结点也为当前插入节点
head = p;
else {
//原始链表不为空,那么将当前节点的上节点指向原始尾节点
p.before = last;
//原始尾节点的下一个节点指向当前插入节点
last.after = p;
}
}
也就是说将当前添加的元素设为原始链表的尾节点。
②、对于 putTreeVal 方法
是在添加红黑树节点时的操作,LinkedHashMap 也重写了该方法的 newTreeNode 方法:
TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
TreeNode<K,V> p = new TreeNode<K,V>(hash, key, value, next);
linkNodeLast(p);
return p;
}
也就是说上面两个方法都是在将新添加的元素放置到链表的尾端,并维护链表节点之间的关系。
③、对于 afterNodeAccess(e) 方法,在 putVal 方法中,是当添加数据键值对的 key 存在时,会对 value 进行替换。然后调用 afterNodeAccess(e) 方法:
//把当前节点放到双向链表的尾部
void afterNodeAccess(HashMap.Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;
//当 accessOrder = true 并且当前节点不等于尾节点tail。这里将last节点赋值为tail节点
if (accessOrder && (last = tail) != e) {
//记录当前节点的上一个节点b和下一个节点a
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
//释放当前节点和后一个节点的关系
p.after = null;
//如果当前节点的前一个节点为null
if (b == null)
//头节点=当前节点的下一个节点
head = a;
else
//否则b的后节点指向a
b.after = a;
//如果a != null
if (a != null)
//a的前一个节点指向b
a.before = b;
else
//b设为尾节点
last = b;
//如果尾节点为null
if (last == null)
//头节点设为p
head = p;
else {
//否则将p放到双向链表的最后
p.before = last;
last.after = p;
}
//将尾节点设为p
tail = p;
//LinkedHashMap对象操作次数+1,用于快速失败校验
++modCount;
}
}
该方法是在 accessOrder = true 并且 插入的当前节点不等于尾节点时,该方法才会生效。并且该方法的作用是将插入的节点变为尾节点,后面在get方法中也会调用。代码实现可能有点绕,可以借助下图来理解:
④、在看 afterNodeInsertion(evict) 方法
void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMap.Entry<K,V> first;
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
}
该方法用来移除最老的首节点,首先方法要能执行到if语句里面,必须 evict = true,并且 头节点不为null,并且 removeEldestEntry(first) 返回true,这三个条件必须同时满足,前面两个好理解,我们看最后这个方法条件:
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}
这就奇怪了,该方法直接返回的是 false,也就是说怎么都不会进入到 if 方法体内了,那这是这么回事呢?
这其实是用来实现 LRU(Least Recently Used,最近最少使用)Cache 时,重写的一个方法。比如在 mybatis-connector 包中,有这样一个类:
package com.mysql.jdbc.util;
import java.util.LinkedHashMap;
import java.util.Map.Entry;
public class LRUCache<K, V> extends LinkedHashMap<K, V> {
private static final long serialVersionUID = 1L;
protected int maxElements;
public LRUCache(int maxSize) {
super(maxSize, 0.75F, true);
this.maxElements = maxSize;
}
protected boolean removeEldestEntry(Entry<K, V> eldest) {
return this.size() > this.maxElements;
}
}
可以看到,它重写了 removeEldestEntry(Entry<K,V> eldest) 方法,当元素的个数大于设定的最大个数,便移除首元素。
5、删除元素
同理也是调用 HashMap 的remove 方法,这里我不作过多的讲解,着重看LinkedHashMap 重写的第 46 行方法。
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
//(n - 1) & hash找到桶的位置
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
//如果键的值与链表第一个节点相等,则将 node 指向该节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
//如果桶节点存在下一个节点
else if ((e = p.next) != null) {
//节点为红黑树
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);//找到需要删除的红黑树节点
else {
do {//遍历链表,找到待删除的节点
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
//删除节点,并进行调节红黑树平衡
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
我们看第 46 行代码实现:
void afterNodeRemoval(HashMap.Node<K,V> e) { // unlink
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.before = p.after = null;
if (b == null)
head = a;
else
b.after = a;
if (a == null)
tail = b;
else
a.before = b;
}
该方法其实很好理解,就是当我们删除某个节点时,为了保证链表还是有序的,那么必须维护其前后节点。而该方法的作用就是维护删除节点的前后节点关系。
6、查找元素
public V get(Object key) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) == null)
return null;
if (accessOrder)
afterNodeAccess(e);
return e.value;
}
相比于 HashMap 的 get 方法,这里多出了第 5,6行代码,当 accessOrder = true 时,即表示按照最近访问的迭代顺序,会将访问过的元素放在链表后面。
对于 afterNodeAccess(e) 方法,在前面第 4 小节 添加元素已经介绍过了,这就不在介绍。
7、遍历元素
在介绍 HashMap 时,我们介绍了 4 中遍历方式,同理,对于 LinkedHashMap 也有 4 种,这里我们介绍效率较高的两种遍历方式:
①、得到 Entry 集合,然后遍历 Entry
LinkedHashMap<String,String> map = new LinkedHashMap<>();
map.put("A","1");
map.put("B","2");
map.put("C","3");
map.get("B");
Set<Map.Entry<String,String>> entrySet = map.entrySet();
for(Map.Entry<String,String> entry : entrySet ){
System.out.println(entry.getKey()+"---"+entry.getValue());
}
②、迭代
Iterator<Map.Entry<String,String>> iterator = map.entrySet().iterator();
while(iterator.hasNext()){
Map.Entry<String,String> entry = iterator.next();
System.out.println(entry.getKey()+"----"+entry.getValue());
}
这两种效率都还不错,通过迭代的方式可以对一边遍历一边删除元素,而第一种删除元素会报错。
打印结果:
8、迭代器
我们把上面遍历的LinkedHashMap 构造函数改成下面的:
LinkedHashMap<String,String> map = new LinkedHashMap<>(16,0.75F,true);
也就是说将 accessOrder = true,表示按照访问顺序来遍历,注意看上面的 第 5 行代码:map.get("B)。也就是说设置 accessOrder = true 之后,那么 B---2 应该是最后输出,我们看一下打印结果:
结果跟预期一致。那么在遍历的过程中,LinkedHashMap 是如何进行的呢?
我们追溯源码:首先进入到 map.entrySet() 方法里面:
发现 entrySet = new LinkedEntrySet() ,接下来我们查看 LinkedEntrySet 类。
这是一个内部类,我们查看其 iterator() 方法,发现又new 了一个新对象 LinkedEntryIterator,接着看这个类:
这个类继承 LinkedHashIterator。
abstract class LinkedHashIterator {
LinkedHashMap.Entry<K,V> next;
LinkedHashMap.Entry<K,V> current;
int expectedModCount;
LinkedHashIterator() {
next = head;
expectedModCount = modCount;
current = null;
}
public final boolean hasNext() {
return next != null;
}
final LinkedHashMap.Entry<K,V> nextNode() {
LinkedHashMap.Entry<K,V> e = next;
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();
current = e;
next = e.after;
return e;
}
public final void remove() {
HashMap.Node<K,V> p = current;
if (p == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
current = null;
K key = p.key;
removeNode(hash(key), key, null, false, false);
expectedModCount = modCount;
}
}
看到 nextNode() 方法,很显然是通过遍历链表的方式来遍历整个 LinkedHashMap 。
9、总结
通过上面的介绍,关于 LinkedHashMap ,我想直接用下面一幅图来解释:
去掉红色和蓝色的虚线指针,其实就是一个HashMap。
转载自:https://juejin.cn/post/7249397451055087653