leetcode 2385. Amount of Time for Binary Tree to Be Infected (python)
描述
You are given the root of a binary tree with unique values, and an integer start. At minute 0, an infection starts from the node with value start. Each minute, a node becomes infected if:
- The node is currently uninfected.
- The node is adjacent to an infected node.
Return the number of minutes needed for the entire tree to be infected.
Example 1:
Input: root = [1,5,3,null,4,10,6,9,2], start = 3
Output: 4
Explanation: The following nodes are infected during:
- Minute 0: Node 3
- Minute 1: Nodes 1, 10 and 6
- Minute 2: Node 5
- Minute 3: Node 4
- Minute 4: Nodes 9 and 2
It takes 4 minutes for the whole tree to be infected so we return 4.
Example 2:
Input: root = [1], start = 1
Output: 0
Explanation: At minute 0, the only node in the tree is infected so we return 0.
Note:
The number of nodes in the tree is in the range [1, 10^5].
1 <= Node.val <= 10^5
Each node has a unique value.
A node with a value of start exists in the tree.
解析
根据题意,给定具有唯一值的二叉树的根 root 和一个整数 start 。 在第 0 分钟,感染从值为 start 的节点开始。 每分钟,如果出现以下情况,节点就会被感染:
- 该节点当前未受感染。
- 该节点与受感染的节点相邻。
返回整个树被感染所需的分钟数。
这个题很明显整体需要 BFS 的方式进行解题,但是关键在于这是一颗树,我们要使用两个字典 parent 和 child 来记录每个节点的父节点和子节点有哪些,这个过程需要最基础的 DFS 进行解决,然后我们得到 parent 和 child 之后,就可以按照 BFS 的思路从 start 开始模拟病毒扩散的效果来解题,使用 result 来记录扩散时间即可。虽然代码量上比较大,但是很好理解,上半部分就是 DFS 过程,下半部分就是 BFS 过程。当然代码还可以优化,有兴趣的同学可以尝试一下。
时间复杂度为 O(N) ,空间复杂度为 O(N) 。
解答
class Solution(object):
def __init__(self):
self.parent = {}
self.child = collections.defaultdict(list)
def amountOfTime(self, root, start):
def dfs(root):
if not root:
return
if root.left:
self.parent[root.left.val] = root
self.child[root.val].append(root.left)
dfs(root.left)
if root.right:
self.parent[root.right.val] = root
self.child[root.val].append(root.right)
dfs(root.right)
dfs(root)
result = 0
if start == root.val and not self.parent and not self.child:
return result
stack = [start]
visited = set()
while stack:
for _ in range(len(stack)):
node = stack.pop(0)
visited.add(node)
if node in self.parent and self.parent[node].val not in visited:
stack.append(self.parent[node].val)
for c in self.child[node]:
if c.val not in visited:
stack.append(c.val)
if stack:
result += 1
return result
运行结果
80 / 80 test cases passed.
Status: Accepted
Runtime: 2872 ms
Memory Usage: 176.1 MB
原题链接
您的支持是我最大的动力
转载自:https://juejin.cn/post/7138574119045431310