likes
comments
collection
share

阿里前端二面经典手写面试题汇总

作者站长头像
站长
· 阅读数 14

实现类的继承

实现类的继承-简版

类的继承在几年前是重点内容,有n种继承方式各有优劣,es6普及后越来越不重要,那么多种写法有点『回字有四样写法』的意思,如果还想深入理解的去看红宝书即可,我们目前只实现一种最理想的继承方式。

// 寄生组合继承
function Parent(name) {
  this.name = name
}
Parent.prototype.say = function() {
  console.log(this.name + ` say`);
}
Parent.prototype.play = function() {
  console.log(this.name + ` play`);
}

function Child(name, parent) {
  // 将父类的构造函数绑定在子类上
  Parent.call(this, parent)
  this.name = name
}

/** 
 1. 这一步不用Child.prototype = Parent.prototype的原因是怕共享内存,修改父类原型对象就会影响子类
 2. 不用Child.prototype = new Parent()的原因是会调用2次父类的构造方法(另一次是call),会存在一份多余的父类实例属性
3. Object.create是创建了父类原型的副本,与父类原型完全隔离
*/
Child.prototype = Object.create(Parent.prototype);
Child.prototype.say = function() {
  console.log(this.name + ` say`);
}

// 注意记得把子类的构造指向子类本身
Child.prototype.constructor = Child;
// 测试
var parent = new Parent('parent');
parent.say() 

var child = new Child('child');
child.say() 
child.play(); // 继承父类的方法

ES5实现继承-详细

第一种方式是借助call实现继承

function Parent1(){
    this.name = 'parent1';
}
function Child1(){
    Parent1.call(this);
    this.type = 'child1'    
}
console.log(new Child1);

这样写的时候子类虽然能够拿到父类的属性值,但是问题是父类中一旦存在方法那么子类无法继承。那么引出下面的方法

第二种方式借助原型链实现继承:

function Parent2() {
    this.name = 'parent2';
    this.play = [1, 2, 3]
  }
  function Child2() {
    this.type = 'child2';
  }
  Child2.prototype = new Parent2();

  console.log(new Child2());

看似没有问题,父类的方法和属性都能够访问,但实际上有一个潜在的不足。举个例子:

var s1 = new Child2();
  var s2 = new Child2();
  s1.play.push(4);
  console.log(s1.play, s2.play); // [1,2,3,4] [1,2,3,4]

明明我只改变了s1的play属性,为什么s2也跟着变了呢?很简单,因为两个实例使用的是同一个原型对象

第三种方式:将前两种组合:

function Parent3 () {
    this.name = 'parent3';
    this.play = [1, 2, 3];
  }
  function Child3() {
    Parent3.call(this);
    this.type = 'child3';
  }
  Child3.prototype = new Parent3();
  var s3 = new Child3();
  var s4 = new Child3();
  s3.play.push(4);
  console.log(s3.play, s4.play); // [1,2,3,4] [1,2,3]

之前的问题都得以解决。但是这里又徒增了一个新问题,那就是Parent3的构造函数会多执行了一次(Child3.prototype = new Parent3();)。这是我们不愿看到的。那么如何解决这个问题?

第四种方式: 组合继承的优化1

function Parent4 () {
    this.name = 'parent4';
    this.play = [1, 2, 3];
  }
  function Child4() {
    Parent4.call(this);
    this.type = 'child4';
  }
  Child4.prototype = Parent4.prototype;

这里让将父类原型对象直接给到子类,父类构造函数只执行一次,而且父类属性和方法均能访问,但是我们来测试一下

var s3 = new Child4();
  var s4 = new Child4();
  console.log(s3)

子类实例的构造函数是Parent4,显然这是不对的,应该是Child4。

第五种方式(最推荐使用):优化2

function Parent5 () {
    this.name = 'parent5';
    this.play = [1, 2, 3];
  }
  function Child5() {
    Parent5.call(this);
    this.type = 'child5';
  }
  Child5.prototype = Object.create(Parent5.prototype);
  Child5.prototype.constructor = Child5;

这是最推荐的一种方式,接近完美的继承。

实现instanceOf

思路:

  • 步骤1:先取得当前类的原型,当前实例对象的原型链
  • ​步骤2:一直循环(执行原型链的查找机制)
    • 取得当前实例对象原型链的原型链(proto = proto.__proto__,沿着原型链一直向上查找)
    • 如果 当前实例的原型链__proto__上找到了当前类的原型prototype,则返回 true
    • 如果 一直找到Object.prototype.__proto__ == nullObject的基类(null)上面都没找到,则返回 false
// 实例.__ptoto__ === 类.prototype
function _instanceof(example, classFunc) {
    // 由于instance要检测的是某对象,需要有一个前置判断条件
    //基本数据类型直接返回false
    if(typeof example !== 'object' || example === null) return false;

    let proto = Object.getPrototypeOf(example);
    while(true) {
        if(proto == null) return false;

        // 在当前实例对象的原型链上,找到了当前类
        if(proto == classFunc.prototype) return true;
        // 沿着原型链__ptoto__一层一层向上查
        proto = Object.getPrototypeof(proto); // 等于proto.__ptoto__
    }
}

console.log('test', _instanceof(null, Array)) // false
console.log('test', _instanceof([], Array)) // true
console.log('test', _instanceof('', Array)) // false
console.log('test', _instanceof({}, Object)) // true

实现一个队列

基于链表结构实现队列

const LinkedList = require('./实现一个链表结构')

// 用链表默认使用数组来模拟队列,性能更佳
class Queue {
  constructor() {
    this.ll = new LinkedList()
  }
  // 向队列中添加
  offer(elem) {
    this.ll.add(elem)
  }
  // 查看第一个
  peek() {
    return this.ll.get(0)
  }
  // 队列只能从头部删除
  remove() {
    return this.ll.remove(0)
  }
}

var queue = new Queue()

queue.offer(1)
queue.offer(2)
queue.offer(3)
var removeVal = queue.remove(3)

console.log(queue.ll,'queue.ll')
console.log(removeVal,'queue.remove')
console.log(queue.peek(),'queue.peek')

实现every方法

Array.prototype.myEvery=function(callback, context = window){
    var len=this.length,
        flag=true,
        i = 0;

    for(;i < len; i++){
      if(!callback.apply(context,[this[i], i , this])){
        flag=false;
        break;
      } 
    }
    return flag;
  }


  // var obj = {num: 1}
  // var aa=arr.myEvery(function(v,index,arr){
  //     return v.num>=12;
  // },obj)
  // console.log(aa)

实现LRU淘汰算法

LRU 缓存算法是一个非常经典的算法,在很多面试中经常问道,不仅仅包括前端面试

LRU 英文全称是 Least Recently Used,英译过来就是” 最近最少使用 “的意思。LRU 是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间 t,当须淘汰一个页面时,选择现有页面中其 t 值最大的,即最近最少使用的页面予以淘汰

通俗的解释:

假如我们有一块内存,专门用来缓存我们最近发访问的网页,访问一个新网页,我们就会往内存中添加一个网页地址,随着网页的不断增加,内存存满了,这个时候我们就需要考虑删除一些网页了。这个时候我们找到内存中最早访问的那个网页地址,然后把它删掉。这一整个过程就可以称之为 LRU 算法

阿里前端二面经典手写面试题汇总

上图就很好的解释了 LRU 算法在干嘛了,其实非常简单,无非就是我们往内存里面添加或者删除元素的时候,遵循最近最少使用原则

使用场景

LRU 算法使用的场景非常多,这里简单举几个例子即可:

  • 我们操作系统底层的内存管理,其中就包括有 LRU 算法
  • 我们常见的缓存服务,比如 redis 等等
  • 比如浏览器的最近浏览记录存储
  • vue中的keep-alive组件使用了LRU算法

梳理实现 LRU 思路

  • 特点分析:
    • 我们需要一块有限的存储空间,因为无限的化就没必要使用LRU算发删除数据了。
    • 我们这块存储空间里面存储的数据需要是有序的,因为我们必须要顺序来删除数据,所以可以考虑使用 ArrayMap 数据结构来存储,不能使用 Object,因为它是无序的。
    • 我们能够删除或者添加以及获取到这块存储空间中的指定数据。
    • 存储空间存满之后,在添加数据时,会自动删除时间最久远的那条数据。
  • 实现需求:
    • 实现一个 LRUCache 类型,用来充当存储空间
    • 采用 Map 数据结构存储数据,因为它的存取时间复杂度为 O(1),数组为 O(n)
    • 实现 getset 方法,用来获取和添加数据
    • 我们的存储空间有长度限制,所以无需提供删除方法,存储满之后,自动删除最久远的那条数据
    • 当使用 get 获取数据后,该条数据需要更新到最前面

具体实现

class LRUCache {
  constructor(length) {
    this.length = length; // 存储长度
    this.data = new Map(); // 存储数据
  }
  // 存储数据,通过键值对的方式
  set(key, value) {
    const data = this.data;
    if (data.has(key)) {
      data.delete(key)
    }

    data.set(key, value);

    // 如果超出了容量,则需要删除最久的数据
    if (data.size > this.length) {
      const delKey = data.keys().next().value;
      data.delete(delKey);
    }
  }
  // 获取数据
  get(key) {
    const data = this.data;
    // 未找到
    if (!data.has(key)) {
      return null;
    }
    const value = data.get(key); // 获取元素
    data.delete(key); // 删除元素
    data.set(key, value); // 重新插入元素

    return value // 返回获取的值
  }
}
var lruCache = new LRUCache(5);
  • set 方法:往 map 里面添加新数据,如果添加的数据存在了,则先删除该条数据,然后再添加。如果添加数据后超长了,则需要删除最久远的一条数据。data.keys().next().value 便是获取最后一条数据的意思。
  • get 方法:首先从 map 对象中拿出该条数据,然后删除该条数据,最后再重新插入该条数据,确保将该条数据移动到最前面
// 测试

// 存储数据 set:

lruCache.set('name', 'test');
lruCache.set('age', 10);
lruCache.set('sex', '男');
lruCache.set('height', 180);
lruCache.set('weight', '120');
console.log(lruCache);

阿里前端二面经典手写面试题汇总

继续插入数据,此时会超长,代码如下:

lruCache.set('grade', '100');
console.log(lruCache);

阿里前端二面经典手写面试题汇总

此时我们发现存储时间最久的 name 已经被移除了,新插入的数据变为了最前面的一个。

我们使用 get 获取数据,代码如下:

阿里前端二面经典手写面试题汇总

我们发现此时 sex 字段已经跑到最前面去了

总结

LRU 算法其实逻辑非常的简单,明白了原理之后实现起来非常的简单。最主要的是我们需要使用什么数据结构来存储数据,因为 map 的存取非常快,所以我们采用了它,当然数组其实也可以实现的。还有一些小伙伴使用链表来实现 LRU,这当然也是可以的。

实现Promise相关方法

实现Promise的resolve

实现 resolve 静态方法有三个要点:

  • 传参为一个 Promise, 则直接返回它。
  • 传参为一个 thenable 对象,返回的 Promise 会跟随这个对象,采用它的最终状态作为自己的状态。
  • 其他情况,直接返回以该值为成功状态的promise对象。
Promise.resolve = (param) => {
  if(param instanceof Promise) return param;
  return new Promise((resolve, reject) => {
    if(param && param.then && typeof param.then === 'function') {
      // param 状态变为成功会调用resolve,将新 Promise 的状态变为成功,反之亦然
      param.then(resolve, reject);
    }else {
      resolve(param);
    }
  })
}

实现 Promise.reject

Promise.reject 中传入的参数会作为一个 reason 原封不动地往下传, 实现如下:

Promise.reject = function (reason) {
    return new Promise((resolve, reject) => {
        reject(reason);
    });
}

实现 Promise.prototype.finally

前面的promise不管成功还是失败,都会走到finally中,并且finally之后,还可以继续then(说明它还是一个then方法是关键),并且会将初始的promise值原封不动的传递给后面的then.

Promise.prototype.finally最大的作用

  • finally里的函数,无论如何都会执行,并会把前面的值原封不动传递给下一个then方法中
  • 如果finally函数中有promise等异步任务,会等它们全部执行完毕,再结合之前的成功与否状态,返回值

Promise.prototype.finally六大情况用法

// 情况1
Promise.resolve(123).finally((data) => { // 这里传入的函数,无论如何都会执行
  console.log(data); // undefined
})

// 情况2 (这里,finally方法相当于做了中间处理,起一个过渡的作用)
Promise.resolve(123).finally((data) => {
  console.log(data); // undefined
}).then(data => {
  console.log(data); // 123
})

// 情况3 (这里只要reject,都会走到下一个then的err中)
Promise.reject(123).finally((data) => {
  console.log(data); // undefined
}).then(data => {
  console.log(data);
}, err => {
  console.log(err, 'err'); // 123 err
})

// 情况4 (一开始就成功之后,会等待finally里的promise执行完毕后,再把前面的data传递到下一个then中)
Promise.resolve(123).finally((data) => {
  console.log(data); // undefined
  return new Promise((resolve, reject) => {
    setTimeout(() => {
      resolve('ok');
    }, 3000)
  })
}).then(data => {
  console.log(data, 'success'); // 123 success
}, err => {
  console.log(err, 'err');
})

// 情况5 (虽然一开始成功,但是只要finally函数中的promise失败了,就会把其失败的值传递到下一个then的err中)
Promise.resolve(123).finally((data) => {
  console.log(data); // undefined
  return new Promise((resolve, reject) => {
    setTimeout(() => {
      reject('rejected');
    }, 3000)
  })
}).then(data => {
  console.log(data, 'success');
}, err => {
  console.log(err, 'err'); // rejected err
})

// 情况6 (虽然一开始失败,但是也要等finally中的promise执行完,才能把一开始的err传递到err的回调中)
Promise.reject(123).finally((data) => {
  console.log(data); // undefined
  return new Promise((resolve, reject) => {
    setTimeout(() => {
      resolve('resolve');
    }, 3000)
  })
}).then(data => {
  console.log(data, 'success');
}, err => {
  console.log(err, 'err'); // 123 err
})

源码实现

Promise.prototype.finally = function (callback) {
  return this.then((data) => {
    // 让函数执行 内部会调用方法,如果方法是promise,需要等待它完成
    // 如果当前promise执行时失败了,会把err传递到,err的回调函数中
    return Promise.resolve(callback()).then(() => data); // data 上一个promise的成功态
  }, err => {
    return Promise.resolve(callback()).then(() => {
      throw err; // 把之前的失败的err,抛出去
    });
  })
}

实现 Promise.all

对于 all 方法而言,需要完成下面的核心功能:

  • 传入参数为一个空的可迭代对象,则直接进行resolve
  • 如果参数中有一个promise失败,那么Promise.all返回的promise对象失败。
  • 在任何情况下,Promise.all 返回的 promise 的完成状态的结果都是一个数组
Promise.all = function(promises) {
  return new Promise((resolve, reject) => {
    let result = [];
    let index = 0;
    let len = promises.length;
    if(len === 0) {
      resolve(result);
      return;
    }

    for(let i = 0; i < len; i++) {
      // 为什么不直接 promise[i].then, 因为promise[i]可能不是一个promise
      Promise.resolve(promise[i]).then(data => {
        result[i] = data;
        index++;
        if(index === len) resolve(result);
      }).catch(err => {
        reject(err);
      })
    }
  })
}

实现promise.allsettle

MDN: Promise.allSettled()方法返回一个在所有给定的promise已经fulfilledrejected后的promise,并带有一个对象数组,每个对象表示对应的promise`结果

当您有多个彼此不依赖的异步任务成功完成时,或者您总是想知道每个promise的结果时,通常使用它。

【译】Promise.allSettledPromise.all 类似, 其参数接受一个Promise的数组, 返回一个新的Promise, 唯一的不同在于, 其不会进行短路, 也就是说当Promise全部处理完成后我们可以拿到每个Promise的状态, 而不管其是否处理成功。

用法 | 测试用例

let fs = require('fs').promises;

let getName = fs.readFile('./name.txt', 'utf8'); // 读取文件成功
let getAge = fs.readFile('./age.txt', 'utf8');

Promise.allSettled([1, getName, getAge, 2]).then(data => {
    console.log(data);
});
// 输出结果
/*
    [
    { status: 'fulfilled', value: 1 },
    { status: 'fulfilled', value: 'zf' },
    { status: 'fulfilled', value: '11' },
    { status: 'fulfilled', value: 2 }
    ]
*/

let getName = fs.readFile('./name123.txt', 'utf8'); // 读取文件失败
let getAge = fs.readFile('./age.txt', 'utf8');
// 输出结果
/*
    [
    { status: 'fulfilled', value: 1 },
    {
      status: 'rejected',
      value: [Error: ENOENT: no such file or directory, open './name123.txt'] {
        errno: -2,
        code: 'ENOENT',
        syscall: 'open',
        path: './name123.txt'
      }
    },
    { status: 'fulfilled', value: '11' },
    { status: 'fulfilled', value: 2 }
  ]
*/

实现

function isPromise (val) {
  return typeof val.then === 'function'; // (123).then => undefined
}

Promise.allSettled = function(promises) {
  return new Promise((resolve, reject) => {
    let arr = [];
    let times = 0;
    const setData = (index, data) => {
      arr[index] = data;
      if (++times === promises.length) {
        resolve(arr);
      }
      console.log('times', times)
    }

    for (let i = 0; i < promises.length; i++) {
      let current = promises[i];
      if (isPromise(current)) {
        current.then((data) => {
          setData(i, { status: 'fulfilled', value: data });
        }, err => {
          setData(i, { status: 'rejected', value: err })
        })
      } else {
        setData(i, { status: 'fulfilled', value: current })
      }
    }
  })
}

实现 Promise.race

race 的实现相比之下就简单一些,只要有一个 promise 执行完,直接 resolve 并停止执行

Promise.race = function(promises) {
  return new Promise((resolve, reject) => {
    let len = promises.length;
    if(len === 0) return;
    for(let i = 0; i < len; i++) {
      Promise.resolve(promise[i]).then(data => {
        resolve(data);
        return;
      }).catch(err => {
        reject(err);
        return;
      })
    }
  })
}

实现一个简版Promise

// 使用
var promise = new Promise((resolve,reject) => {
    if (操作成功) {
        resolve(value)
    } else {
        reject(error)
    }
})
promise.then(function (value) {
    // success
},function (value) {
    // failure
})
function myPromise(constructor) {
    let self = this;
    self.status = "pending"   // 定义状态改变前的初始状态
    self.value = undefined;   // 定义状态为resolved的时候的状态
    self.reason = undefined;  // 定义状态为rejected的时候的状态
    function resolve(value) {
       if(self.status === "pending") {
          self.value = value;
          self.status = "resolved";
       }
    }
    function reject(reason) {
       if(self.status === "pending") {
          self.reason = reason;
          self.status = "rejected";
       }
    }
    // 捕获构造异常
    try {
       constructor(resolve,reject);
    } catch(e) {
       reject(e);
    }
}
// 添加 then 方法
myPromise.prototype.then = function(onFullfilled,onRejected) {
   let self = this;
   switch(self.status) {
      case "resolved":
        onFullfilled(self.value);
        break;
      case "rejected":
        onRejected(self.reason);
        break;
      default:       
   }
}

var p = new myPromise(function(resolve,reject) {
    resolve(1)
});
p.then(function(x) {
    console.log(x) // 1
})

使用class实现

class MyPromise {
  constructor(fn) {
    this.resolvedCallbacks = [];
    this.rejectedCallbacks = [];

    this.state = 'PENDING';
    this.value = '';

    fn(this.resolve.bind(this), this.reject.bind(this));

  }

  resolve(value) {
    if (this.state === 'PENDING') {
      this.state = 'RESOLVED';
      this.value = value;

      this.resolvedCallbacks.map(cb => cb(value));   
    }
  }

  reject(value) {
    if (this.state === 'PENDING') {
      this.state = 'REJECTED';
      this.value = value;

      this.rejectedCallbacks.map(cb => cb(value));
    }
  }

  then(onFulfilled, onRejected) {
    if (this.state === 'PENDING') {
      this.resolvedCallbacks.push(onFulfilled);
      this.rejectedCallbacks.push(onRejected);

    }

    if (this.state === 'RESOLVED') {
      onFulfilled(this.value);
    }

    if (this.state === 'REJECTED') {
      onRejected(this.value);
    }
  }
}

Promise 实现-详细

  • 可以把 Promise 看成一个状态机。初始是 pending 状态,可以通过函数 resolvereject ,将状态转变为 resolved或者 rejected 状态,状态一旦改变就不能再次变化。
  • then 函数会返回一个 Promise 实例,并且该返回值是一个新的实例而不是之前的实例。因为 Promise 规范规定除了 pending 状态,其他状态是不可以改变的,如果返回的是一个相同实例的话,多个 then 调用就失去意义了。
  • 对于 then来说,本质上可以把它看成是 flatMap
// 三种状态
const PENDING = "pending";
const RESOLVED = "resolved";
const REJECTED = "rejected";
// promise 接收一个函数参数,该函数会立即执行
function MyPromise(fn) {
  let _this = this;
  _this.currentState = PENDING;
  _this.value = undefined;
  // 用于保存 then 中的回调,只有当 promise
  // 状态为 pending 时才会缓存,并且每个实例至多缓存一个
  _this.resolvedCallbacks = [];
  _this.rejectedCallbacks = [];

  _this.resolve = function (value) {
    if (value instanceof MyPromise) {
      // 如果 value 是个 Promise,递归执行
      return value.then(_this.resolve, _this.reject)
    }
    setTimeout(() => { // 异步执行,保证执行顺序
      if (_this.currentState === PENDING) {
        _this.currentState = RESOLVED;
        _this.value = value;
        _this.resolvedCallbacks.forEach(cb => cb());
      }
    })
  };

  _this.reject = function (reason) {
    setTimeout(() => { // 异步执行,保证执行顺序
      if (_this.currentState === PENDING) {
        _this.currentState = REJECTED;
        _this.value = reason;
        _this.rejectedCallbacks.forEach(cb => cb());
      }
    })
  }
  // 用于解决以下问题
  // new Promise(() => throw Error('error))
  try {
    fn(_this.resolve, _this.reject);
  } catch (e) {
    _this.reject(e);
  }
}

MyPromise.prototype.then = function (onResolved, onRejected) {
  var self = this;
  // 规范 2.2.7,then 必须返回一个新的 promise
  var promise2;
  // 规范 2.2.onResolved 和 onRejected 都为可选参数
  // 如果类型不是函数需要忽略,同时也实现了透传
  // Promise.resolve(4).then().then((value) => console.log(value))
  onResolved = typeof onResolved === 'function' ? onResolved : v => v;
  onRejected = typeof onRejected === 'function' ? onRejected : r => throw r;

  if (self.currentState === RESOLVED) {
    return (promise2 = new MyPromise(function (resolve, reject) {
      // 规范 2.2.4,保证 onFulfilled,onRjected 异步执行
      // 所以用了 setTimeout 包裹下
      setTimeout(function () {
        try {
          var x = onResolved(self.value);
          resolutionProcedure(promise2, x, resolve, reject);
        } catch (reason) {
          reject(reason);
        }
      });
    }));
  }

  if (self.currentState === REJECTED) {
    return (promise2 = new MyPromise(function (resolve, reject) {
      setTimeout(function () {
        // 异步执行onRejected
        try {
          var x = onRejected(self.value);
          resolutionProcedure(promise2, x, resolve, reject);
        } catch (reason) {
          reject(reason);
        }
      });
    }));
  }

  if (self.currentState === PENDING) {
    return (promise2 = new MyPromise(function (resolve, reject) {
      self.resolvedCallbacks.push(function () {
        // 考虑到可能会有报错,所以使用 try/catch 包裹
        try {
          var x = onResolved(self.value);
          resolutionProcedure(promise2, x, resolve, reject);
        } catch (r) {
          reject(r);
        }
      });

      self.rejectedCallbacks.push(function () {
        try {
          var x = onRejected(self.value);
          resolutionProcedure(promise2, x, resolve, reject);
        } catch (r) {
          reject(r);
        }
      });
    }));
  }
};
// 规范 2.3
function resolutionProcedure(promise2, x, resolve, reject) {
  // 规范 2.3.1,x 不能和 promise2 相同,避免循环引用
  if (promise2 === x) {
    return reject(new TypeError("Error"));
  }
  // 规范 2.3.2
  // 如果 x 为 Promise,状态为 pending 需要继续等待否则执行
  if (x instanceof MyPromise) {
    if (x.currentState === PENDING) {
      x.then(function (value) {
        // 再次调用该函数是为了确认 x resolve 的
        // 参数是什么类型,如果是基本类型就再次 resolve
        // 把值传给下个 then
        resolutionProcedure(promise2, value, resolve, reject);
      }, reject);
    } else {
      x.then(resolve, reject);
    }
    return;
  }
  // 规范 2.3.3.3.3
  // reject 或者 resolve 其中一个执行过得话,忽略其他的
  let called = false;
  // 规范 2.3.3,判断 x 是否为对象或者函数
  if (x !== null && (typeof x === "object" || typeof x === "function")) {
    // 规范 2.3.3.2,如果不能取出 then,就 reject
    try {
      // 规范 2.3.3.1
      let then = x.then;
      // 如果 then 是函数,调用 x.then
      if (typeof then === "function") {
        // 规范 2.3.3.3
        then.call(
          x,
          y => {
            if (called) return;
            called = true;
            // 规范 2.3.3.3.1
            resolutionProcedure(promise2, y, resolve, reject);
          },
          e => {
            if (called) return;
            called = true;
            reject(e);
          }
        );
      } else {
        // 规范 2.3.3.4
        resolve(x);
      }
    } catch (e) {
      if (called) return;
      called = true;
      reject(e);
    }
  } else {
    // 规范 2.3.4,x 为基本类型
    resolve(x);
  }
}

实现Promisify

const fs = require('fs')
const path = require('path')

// node中使用
// const fs = require('fs').promises 12.18版
// const promisify = require('util').promisify

// 包装node api promise化 典型的高级函数
const promisify = fn=>{
  return (...args)=>{
    return new Promise((resolve,reject)=>{
      fn(...args, (err,data)=>{
        if(err) {
          reject(err)
        } 
        resolve(data)
      })
    })
  }
}

// const read = promisify(fs.readFile)

// read(path.join(__dirname, './promise.js'), 'utf8').then(d=>{
//   console.log(d)
// })

// promise化node所有api
const promisifyAll = target=>{
  Reflect.ownKeys(target).forEach(key=>{
    if(typeof target[key] === 'function') {
      target[key+'Async'] = promisify(target[key])
    }
  })
  return target
}

// promise化fs下的函数
const promisifyNew = promisifyAll(fs)

promisifyNew.readFileAsync(path.join(__dirname, './promise.js'), 'utf8').then(d=>{
  console.log(d)
})

module.exports = {
  promisify,
  promisifyAll
}

完整实现Promises/A+规范

![图片转存失败,建议将图片保存下来直接上传
        /**
 * Promises/A+规范 实现一个promise
 * https://promisesaplus.com/
*/

const EMUM = {
  PENDING: 'PENDING',
  FULFILLED: 'FULFILLED',
  REJECTED: 'REJECTED'
}

// x 返回值
// promise2 then的时候new的promise
// promise2的resolve, reject
const resolvePromise = (x, promise2, resolve, reject)=>{
  // 解析promise的值解析promise2是成功还是失败 传递到下层then
  if(x === promise2) {
    reject(new TypeError('类型错误'))
  }
  // 这里的x如果是一个promise的话 可能是其他的promise,可能调用了成功 又调用了失败
  // 防止resolve的时候 又throw err抛出异常到reject了
  let called
  // 如果x是promise 那么就采用他的状态
  // 有then方法是promise
  if(typeof x === 'object' && typeof x!== null || typeof x === 'function') {
    // x是对象或函数
    try {
      let then = x.then // 缓存,不用多次取值
      if(typeof then === 'function') {
        // 是promise,调用then方法里面有this,需要传入this为x才能取到then方法里面的值this.value
        then.call(x, y=>{// 成功
          // y值可能也是一个promise 如resolve(new Promise()) 此时的y==new Promise()
          // 递归解析y,直到拿到普通的值resolve(x出去)
          if(called) return;
          called = true;

          resolvePromise(y, promise2, resolve, reject)
        },r=>{// 一旦失败直接失败
          if(called) return;
          called = true;
          reject(r)
        })
      } else {
        // 普通对象不是promise
        resolve(x)
      }
    } catch (e) {
      // 对象取值可能报错,用defineProperty定义get 抛出异常
      if(called) return;
      called = true;
      reject(e)
    }
  } else {
    // x是普通值
    resolve(x) // 直接成功
  }

}
class myPromise {
  constructor(executor) {
    this.status = EMUM.PENDING // 当前状态
    this.value = undefined // resolve接收值
    this.reason = undefined // reject失败返回值

    /**
     * 同一个promise可以then多次(发布订阅模式)
     * 调用then时 当前状态是等待态,需要将当前成功或失败的回调存放起来(订阅)
     * 调用resolve时 将订阅函数进行执行(发布)
    */
    // 成功队列
    this.onResolvedCallbacks = []
    // 失败队列
    this.onRejectedCallbacks = []
    const resolve = value =>{
      // 如果value是一个promise,需要递归解析
      // 如 myPromise.resolve(new myPromise()) 需要解析value
      if(value instanceof myPromise) {
        // 不停的解析 直到值不是promise
        return value.then(resolve,reject)
      }

      if(this.status === EMUM.PENDING) {
        this.status = EMUM.FULFILLED
        this.value = value

        this.onResolvedCallbacks.forEach(fn=>fn())
      }
    }
    const reject = reason =>{
      if(this.status === EMUM.PENDING) {
        this.status = EMUM.REJECTED
        this.reason = reason

        this.onRejectedCallbacks.forEach(fn=>fn())
      }
    }
    try {
      executor(resolve,reject)
    } catch(e) {
      reject(e)
    }
  }
  then(onFulFilled, onRejected) {
    // 透传 处理默认不传的情况
    // new Promise((resolve,reject)=>{
    //   resolve(1)
    // }).then().then().then(d=>{})
    // new Promise((resolve,reject)=>{
    //   resolve(1)
    // }).then(v=>v).then(v=>v).then(d=>{})
    // new Promise((resolve,reject)=>{
    //   reject(1)
    // }).then().then().then(null, e=>{console.log(e)})
    // new Promise((resolve,reject)=>{
    //   reject(1)
    // }).then(null,e=>{throw e}).then(null,e=>{throw e}).then(null,e=>{console.log(e)})
    onFulFilled = typeof onFulFilled === 'function' ? onFulFilled : v => v
    onRejected = typeof onRejected === 'function' ? onRejected : err => {throw err}

    // 调用then 创建一个新的promise
    let promise2 = new myPromise((resolve,reject)=>{
      // 根据value判断是resolve 还是reject value也可能是promise
      if(this.status === EMUM.FULFILLED) {
        setTimeout(() => {
          try {
            // 成功回调结果
            let x = onFulFilled(this.value)
            // 解析promise
            resolvePromise(x, promise2,resolve,reject)
          } catch (error) {
            reject(error)
          }
        }, 0);
      }
      if(this.status === EMUM.REJECTED) {
        setTimeout(() => {
          try {
            let x = onRejected(this.reason)
            // 解析promise
            resolvePromise(x, promise2,resolve,reject)
          } catch (error) {
            reject(error)
          }
        }, 0);
      }
      // 用户还未调用resolve或reject方法
      if(this.status === EMUM.PENDING) {
        this.onResolvedCallbacks.push(()=>{
          try {
            let x = onFulFilled(this.value)
            // 解析promise
            resolvePromise(x, promise2,resolve,reject)
          } catch (error) {
            reject(error)
          }
        })
        this.onRejectedCallbacks.push(()=>{
          try {
            let x = onRejected(this.reason)
            // 解析promise
            resolvePromise(x, promise2,resolve,reject)
          } catch (error) {
            reject(error)
          }
        })
      }
    })

    return promise2
  }
  catch(errCallback) {
    // 等同于没有成功,把失败放进去而已
    return this.then(null, errCallback)
  }
  // myPromise.resolve 具备等待功能的 如果参数的promise会等待promise解析完毕在向下执行
  static resolve(val) {
    return new myPromise((resolve,reject)=>{
      resolve(val)
    })
  }
  // myPromise.reject 直接将值返回
  static reject(reason) {
    return new myPromise((resolve,reject)=>{
      reject(reason)
    })
  }
  // finally传入的函数 无论成功或失败都执行
  // Promise.reject(100).finally(()=>{console.log(1)}).then(d=>console.log('success',d)).catch(er=>console.log('faild',er))
  // Promise.reject(100).finally(()=>new Promise()).then(d=>console.log(d)).catch(er=>)
  finally(callback) {
    return this.then((val)=>{
      return myPromise.resolve(callback()).then(()=>val)
    },(err)=>{
      return myPromise.resolve(callback()).then(()=>{throw err})
    })
  }
  // Promise.all
  static all(values) {
    return new myPromise((resolve,reject)=>{
      let resultArr = []
      let orderIndex = 0
      const processResultByKey = (value,index)=>{
        resultArr[index] = value 
        // 处理完全部
        if(++orderIndex === values.length) {
          resolve(resultArr) // 处理完成的结果返回去
        }
      }
      for (let i = 0; i < values.length; i++) {
        const value = values[i];
        // 是promise
        if(value && typeof value.then === 'function') {
          value.then((val)=>{
            processResultByKey(val,i)
          },reject)
        } else {
          // 不是promise情况
          processResultByKey(value,i)
        }
      }
    })
  }
  static race(promises) {
    // 采用最新成功或失败的作为结果
    return new myPromise((resolve,reject)=>{
      for (let i = 0; i < promises.length; i++) {
        let val = promises[i]
        if(val && typeof val.then === 'function') {
          // 任何一个promise先调用resolve或reject就返回结果了 也就是返回执行最快的那个promise的结果
          val.then(resolve,reject)
        }else{
          // 普通值
          resolve(val)
        }
      }
    })
  }
}


/**
 * =====测试用例-====
 */
// let promise1 = new myPromise((resolve,reject)=>{
//   setTimeout(() => {
//     resolve('成功')
//   }, 900);
// })

// promise1.then(val=>{
//   console.log('success', val)
// },reason=>{
//   console.log('fail', reason)
// })

/**
 * then的使用方式 普通值意味不是promise
 * 
 * 1、then中的回调有两个方法 成功或失败 他们的结果返回(普通值)会传递给外层的下一个then中
 * 2、可以在成功或失败中抛出异常,走到下一次then的失败中
 * 3、返回的是一个promsie,那么会用这个promise的状态作为结果,会用promise的结果向下传递
 * 4、错误处理,会默认先找离自己最新的错误处理,找不到就向下查找,找打了就执行
 */

// read('./name.txt').then(data=>{
//   return '123'
// }).then(data=>{

// }).then(null,err=>{

// })
// // .catch(err=>{ // catch就是没有成功的promise

// // })

/**
 * promise.then实现原理:通过每次返回一个新的promise来实现(promise一旦成功就不能失败,失败就不能成功)
 * 
 */

// function read(data) {
//   return new myPromise((resolve,reject)=>{
//     setTimeout(() => {
//       resolve(new myPromise((resolve,reject)=>resolve(data)))
//     }, 1000);
//   })
// }

// let promise2 = read({name: 'poetry'}).then(data=>{
//   return data
// }).then().then().then(data=>{
//   console.log(data,'-data-')
// },(err)=>{
//   console.log(err,'-err-')
// })

// finally测试
// myPromise
//   .resolve(100)
//   .finally(()=>{
//     return new myPromise((resolve,reject)=>setTimeout(() => {
//       resolve(100)
//     }, 100))
//   })
//   .then(d=>console.log('finally success',d))
//   .catch(er=>console.log(er, 'finally err'))


/**
 * promise.all 测试
 * 
 * myPromise.all 解决并发问题 多个异步并发获取最终的结果
*/

// myPromise.all([1,2,3,4,new myPromise((resolve,reject)=>{
//   setTimeout(() => {
//     resolve('ok1')
//   }, 1000);
// }),new myPromise((resolve,reject)=>{
//   setTimeout(() => {
//     resolve('ok2')
//   }, 1000);
// })]).then(d=>{
//   console.log(d,'myPromise.all.resolve')
// }).catch(err=>{
//   console.log(err,'myPromise.all.reject')
// })


// 实现promise中断请求
let promise = new Promise((resolve,reject)=>{
  setTimeout(() => {
    // 模拟接口调用 ajax调用超时
    resolve('成功') 
  }, 10000);
})

function promiseWrap(promise) {
  // 包装一个promise 可以控制原来的promise是成功 还是失败
  let abort
  let newPromsie = new myPromise((resolve,reject)=>{
    abort = reject
  })
  // 只要控制newPromsie失败,就可以控制被包装的promise走向失败
  // Promise.race 任何一个先成功或者失败 就可以获得结果
  let p = myPromise.race([promise, newPromsie])
  p.abort = abort

  return p
}

let newPromise = promiseWrap(promise)

setTimeout(() => {
  // 超过3秒超时
  newPromise.abort('请求超时')
}, 3000);

newPromise.then(d=>{
  console.log('d',d)
}).catch(err=>{
  console.log('err',err)
})


// 使用promises-aplus-tests 测试写的promise是否规范
// 全局安装 cnpm i -g promises-aplus-tests
// 命令行执行 promises-aplus-tests promise.js
// 测试入口 产生延迟对象
myPromise.defer = myPromise.deferred = function () {
  let dfd = {}
  dfd.promise = new myPromise((resolve,reject)=>{
    dfd.resolve = resolve
    dfd.reject = reject
  })
  return dfd
}

// 延迟对象用户
//  (http://img-repo.poetries.top/images/20210509172817.png)
// promise解决嵌套问题
// function readData(url) {
//   let dfd = myPromise.defer()
//   fs.readFile(url, 'utf8', function (err,data) {
//     if(err) {
//       dfd.reject()
//     }
//     dfd.resolve(data)
//   })
//   return dfd.promise
// }
// readData().then(d=>{
//   return d
// })

module.exports = myPromise
]()```


参考 [前端进阶面试题详细解答](https://thoughts.teambition.com/share/638dda0502499a004515dc65)


### 实现一个简易的MVVM

> 实现一个简易的`MVVM`我会分为这么几步来:

1. 首先我会定义一个类`Vue`,这个类接收的是一个`options`,那么其中可能有需要挂载的根元素的`id`,也就是`el`属性;然后应该还有一个`data`属性,表示需要双向绑定的数据
2. 其次我会定义一个`Dep`类,这个类产生的实例对象中会定义一个`subs`数组用来存放所依赖这个属性的依赖,已经添加依赖的方法`addSub`,删除方法`removeSub`,还有一个`notify`方法用来遍历更新它`subs`中的所有依赖,同时Dep类有一个静态属性`target`它用来表示当前的观察者,当后续进行依赖收集的时候可以将它添加到`dep.subs`中。
3. 然后设计一个`observe`方法,这个方法接收的是传进来的`data`,也就是`options.data`,里面会遍历`data`中的每一个属性,并使用`Object.defineProperty()`来重写它的`get`和`set`,那么这里面呢可以使用`new Dep()`实例化一个`dep`对象,在`get`的时候调用其`addSub`方法添加当前的观察者`Dep.target`完成依赖收集,并且在`set`的时候调用`dep.notify`方法来通知每一个依赖它的观察者进行更新
4. 完成这些之后,我们还需要一个`compile`方法来将HTML模版和数据结合起来。在这个方法中首先传入的是一个`node`节点,然后遍历它的所有子级,判断是否有`firstElmentChild`,有的话则进行递归调用compile方法,没有`firstElementChild`的话且该`child.innderHTML`用正则匹配满足有`/\{\{(.*)\}\}/`项的话则表示有需要双向绑定的数据,那么就将用正则`new Reg('\\{\\{\\s*' + key + '\\s*\\}\\}', 'gm')`替换掉是其为`msg`变量。
5. 完成变量替换的同时,还需要将`Dep.target`指向当前的这个`child`,且调用一下`this.opt.data[key]`,也就是为了触发这个数据的`get`来对当前的`child`进行依赖收集,这样下次数据变化的时候就能通知`child`进行视图更新了,不过在最后要记得将`Dep.target`指为`null`哦(其实在`Vue`中是有一个`targetStack`栈用来存放`target`的指向的)
6. 那么最后我们只需要监听`document`的`DOMContentLoaded`然后在回调函数中实例化这个`Vue`对象就可以了

**coding** :

需要注意的点:

* `childNodes`会获取到所有的子节点以及文本节点(包括元素标签中的空白节点)
* `firstElementChild`表示获取元素的第一个字元素节点,以此来区分是不是元素节点,如果是的话则调用`compile`进行递归调用,否则用正则匹配
* 这里面的正则真的不难,大家可以看一下

完整代码如下:

```html
<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="UTF-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <meta http-equiv="X-UA-Compatible" content="ie=edge" />
    <title>MVVM</title>
  </head>
  <body>
    <div id="app">
      <h3>姓名</h3>
      <p>{{name}}</p>
      <h3>年龄</h3>
      <p>{{age}}</p>
    </div>
  </body>
</html>
<script>
  document.addEventListener(
    "DOMContentLoaded",
    function () {
      let opt = { el: "#app", data: { name: "等待修改...", age: 20 } };
      let vm = new Vue(opt);
      setTimeout(() => {
        opt.data.name = "jing";
      }, 2000);
    },
    false
  );
  class Vue {
    constructor(opt) {
      this.opt = opt;
      this.observer(opt.data);
      let root = document.querySelector(opt.el);
      this.compile(root);
    }
    observer(data) {
      Object.keys(data).forEach((key) => {
        let obv = new Dep();
        data["_" + key] = data[key];

        Object.defineProperty(data, key, {
          get() {
            Dep.target && obv.addSubNode(Dep.target);
            return data["_" + key];
          },
          set(newVal) {
            obv.update(newVal);
            data["_" + key] = newVal;
          },
        });
      });
    }
    compile(node) {
      [].forEach.call(node.childNodes, (child) => {
        if (!child.firstElementChild && /\{\{(.*)\}\}/.test(child.innerHTML)) {
          let key = RegExp.$1.trim();
          child.innerHTML = child.innerHTML.replace(
            new RegExp("\\{\\{\\s*" + key + "\\s*\\}\\}", "gm"),
            this.opt.data[key]
          );
          Dep.target = child;
          this.opt.data[key];
          Dep.target = null;
        } else if (child.firstElementChild) this.compile(child);
      });
    }
  }

  class Dep {
    constructor() {
      this.subNode = [];
    }
    addSubNode(node) {
      this.subNode.push(node);
    }
    update(newVal) {
      this.subNode.forEach((node) => {
        node.innerHTML = newVal;
      });
    }
  }
</script>

简化版2

function update(){
  console.log('数据变化~~~ mock update view')
}
let obj = [1,2,3]
// 变异方法 push shift unshfit reverse sort splice pop
// Object.defineProperty
let oldProto = Array.prototype;
let proto = Object.create(oldProto); // 克隆了一分
['push','shift'].forEach(item=>{
  proto[item] = function(){
    update();
    oldProto[item].apply(this,arguments);
  }
})
function observer(value){ // proxy reflect
  if(Array.isArray(value)){
    // AOP
    return value.__proto__ = proto;
    // 重写 这个数组里的push shift unshfit reverse sort splice pop
  }
  if(typeof value !== 'object'){
    return value;
  }
  for(let key in value){
    defineReactive(value,key,value[key]);
  }
}
function defineReactive(obj,key,value){
  observer(value); // 如果是对象 继续增加getter和setter
  Object.defineProperty(obj,key,{
    get(){
        return value;
    },
    set(newValue){
        if(newValue !== value){
            observer(newValue);
            value = newValue;
            update();
        }
    }
  })
}
observer(obj); 
// AOP
// obj.name = {n:200}; // 数据变了 需要更新视图 深度监控
// obj.name.n = 100;
obj.push(123);
obj.push(456);
console.log(obj);

实现JSONP方法

利用<script>标签不受跨域限制的特点,缺点是只能支持 get 请求

  • 创建script标签
  • 设置script标签的src属性,以问号传递参数,设置好回调函数callback名称
  • 插入到html文本中
  • 调用回调函数,res参数就是获取的数据
function jsonp({url,params,callback}) {
  return new Promise((resolve,reject)=>{
  let script = document.createElement('script')

    window[callback] = function (data) {
      resolve(data)
      document.body.removeChild(script)
    }
    var arr = []
    for(var key in params) {
      arr.push(`${key}=${params[key]}`)
    }
    script.type = 'text/javascript'
    script.src = `${url}?callback=${callback}&${arr.join('&')}`
    document.body.appendChild(script)
  })
}
// 测试用例
jsonp({
  url: 'http://suggest.taobao.com/sug',
  callback: 'getData',
  params: {
    q: 'iphone手机',
    code: 'utf-8'
  },
}).then(data=>{console.log(data)})
  • 设置 CORS: Access-Control-Allow-Origin:*
  • postMessage

实现Ajax

步骤

  • 创建 XMLHttpRequest 实例
  • 发出 HTTP 请求
  • 服务器返回 XML 格式的字符串
  • JS 解析 XML,并更新局部页面
  • 不过随着历史进程的推进,XML 已经被淘汰,取而代之的是 JSON。

了解了属性和方法之后,根据 AJAX 的步骤,手写最简单的 GET 请求。

对象数组列表转成树形结构(处理菜单)

[
    {
        id: 1,
        text: '节点1',
        parentId: 0 //这里用0表示为顶级节点
    },
    {
        id: 2,
        text: '节点1_1',
        parentId: 1 //通过这个字段来确定子父级
    }
    ...
]

转成
[
    {
        id: 1,
        text: '节点1',
        parentId: 0,
        children: [
            {
                id:2,
                text: '节点1_1',
                parentId:1
            }
        ]
    }
]

实现代码如下:

function listToTree(data) {
  let temp = {};
  let treeData = [];
  for (let i = 0; i < data.length; i++) {
    temp[data[i].id] = data[i];
  }
  for (let i in temp) {
    if (+temp[i].parentId != 0) {
      if (!temp[temp[i].parentId].children) {
        temp[temp[i].parentId].children = [];
      }
      temp[temp[i].parentId].children.push(temp[i]);
    } else {
      treeData.push(temp[i]);
    }
  }
  return treeData;
}

异步串行 | 异步并行

// 字节面试题,实现一个异步加法
function asyncAdd(a, b, callback) {
  setTimeout(function () {
    callback(null, a + b);
  }, 500);
}

// 解决方案
// 1. promisify
const promiseAdd = (a, b) => new Promise((resolve, reject) => {
  asyncAdd(a, b, (err, res) => {
    if (err) {
      reject(err)
    } else {
      resolve(res)
    }
  })
})

// 2. 串行处理
async function serialSum(...args) {
  return args.reduce((task, now) => task.then(res => promiseAdd(res, now)), Promise.resolve(0))
}

// 3. 并行处理
async function parallelSum(...args) {
  if (args.length === 1) return args[0]
  const tasks = []
  for (let i = 0; i < args.length; i += 2) {
    tasks.push(promiseAdd(args[i], args[i + 1] || 0))
  }
  const results = await Promise.all(tasks)
  return parallelSum(...results)
}

// 测试
(async () => {
  console.log('Running...');
  const res1 = await serialSum(1, 2, 3, 4, 5, 8, 9, 10, 11, 12)
  console.log(res1)
  const res2 = await parallelSum(1, 2, 3, 4, 5, 8, 9, 10, 11, 12)
  console.log(res2)
  console.log('Done');
})()

手写深度比较isEqual

思路:深度比较两个对象,就是要深度比较对象的每一个元素。=> 递归

  • 递归退出条件:
    • 被比较的是两个值类型变量,直接用“===”判断
    • 被比较的两个变量之一为null,直接判断另一个元素是否也为null
  • 提前结束递推:
    • 两个变量keys数量不同
    • 传入的两个参数是同一个变量
  • 递推工作:深度比较每一个key
function isEqual(obj1, obj2){
    //其中一个为值类型或null
    if(!isObject(obj1) || !isObject(obj2)){
        return obj1 === obj2;
    }

    //判断是否两个参数是同一个变量
    if(obj1 === obj2){
        return true;
    }

    //判断keys数是否相等
    const obj1Keys = Object.keys(obj1);
    const obj2Keys = Object.keys(obj2);
    if(obj1Keys.length !== obj2Keys.length){
        return false;
    }

    //深度比较每一个key
    for(let key in obj1){
        if(!isEqual(obj1[key], obj2[key])){
            return false;
        }
    }

    return true;
}

数组中的数据根据key去重

给定一个任意数组,实现一个通用函数,让数组中的数据根据 key 排重:

const dedup = (data, getKey = () => {} ) => {
  // todo
}
let data = [
  { id: 1, v: 1 },
  { id: 2, v: 2 },
  { id: 1, v: 1 },
];

// 以 id 作为排重 key,执行函数得到结果
// data = [
//   { id: 1, v: 1 },
//   { id: 2, v: 2 },
// ];

实现

const dedup = (data, getKey = () => { }) => {
    const dateMap = data.reduce((pre, cur) => {
        const key = getKey(cur)
        if (!pre[key]) {
            pre[key] = cur
        }
        return pre
    }, {})
    return Object.values(dateMap)
}

使用

let data = [
    { id: 1, v: 1 },
    { id: 2, v: 2 },
    { id: 1, v: 1 },
];
console.log(dedup(data, (item) => item.id))

// 以 id 作为排重 key,执行函数得到结果
// data = [
//   { id: 1, v: 1 },
//   { id: 2, v: 2 },
// ];

实现节流函数(throttle)

节流函数原理:指频繁触发事件时,只会在指定的时间段内执行事件回调,即触发事件间隔大于等于指定的时间才会执行回调函数。总结起来就是: 事件,按照一段时间的间隔来进行触发

阿里前端二面经典手写面试题汇总

像dom的拖拽,如果用消抖的话,就会出现卡顿的感觉,因为只在停止的时候执行了一次,这个时候就应该用节流,在一定时间内多次执行,会流畅很多

手写简版

使用时间戳的节流函数会在第一次触发事件时立即执行,以后每过 wait 秒之后才执行一次,并且最后一次触发事件不会被执行

时间戳方式:

// func是用户传入需要防抖的函数
// wait是等待时间
const throttle = (func, wait = 50) => {
  // 上一次执行该函数的时间
  let lastTime = 0
  return function(...args) {
    // 当前时间
    let now = +new Date()
    // 将当前时间和上一次执行函数时间对比
    // 如果差值大于设置的等待时间就执行函数
    if (now - lastTime > wait) {
      lastTime = now
      func.apply(this, args)
    }
  }
}

setInterval(
  throttle(() => {
    console.log(1)
  }, 500),
  1
)

定时器方式:

使用定时器的节流函数在第一次触发时不会执行,而是在 delay 秒之后才执行,当最后一次停止触发后,还会再执行一次函数

function throttle(func, delay){
  var timer = null;
  returnfunction(){
    var context = this;
    var args = arguments;
    if(!timer){
      timer = setTimeout(function(){
        func.apply(context, args);
        timer = null;
      },delay);
    }
  }
}

适用场景:

  • DOM 元素的拖拽功能实现(mousemove
  • 搜索联想(keyup
  • 计算鼠标移动的距离(mousemove
  • Canvas 模拟画板功能(mousemove
  • 监听滚动事件判断是否到页面底部自动加载更多
  • 拖拽场景:固定时间内只执行一次,防止超高频次触发位置变动
  • 缩放场景:监控浏览器resize
  • 动画场景:避免短时间内多次触发动画引起性能问题

总结

  • 函数防抖 :将几次操作合并为一次操作进行。原理是维护一个计时器,规定在delay时间后触发函数,但是在delay时间内再次触发的话,就会取消之前的计时器而重新设置。这样一来,只有最后一次操作能被触发。
  • 函数节流 :使得一定时间内只触发一次函数。原理是通过判断是否到达一定时间来触发函数。

实现一个 sleep 函数,比如 sleep(1000) 意味着等待1000毫秒

// 使用 promise来实现 sleep
const sleep = (time) => {
  return new Promise(resolve => setTimeout(resolve, time))
}

sleep(1000).then(() => {
  // 这里写你的骚操作
})

树形结构转成列表(处理菜单)

[
    {
        id: 1,
        text: '节点1',
        parentId: 0,
        children: [
            {
                id:2,
                text: '节点1_1',
                parentId:1
            }
        ]
    }
]
转成
[
    {
        id: 1,
        text: '节点1',
        parentId: 0 //这里用0表示为顶级节点
    },
    {
        id: 2,
        text: '节点1_1',
        parentId: 1 //通过这个字段来确定子父级
    }
    ...
]

实现代码如下:

function treeToList(data) {
  let res = [];
  const dfs = (tree) => {
    tree.forEach((item) => {
      if (item.children) {
        dfs(item.children);
        delete item.children;
      }
      res.push(item);
    });
  };
  dfs(data);
  return res;
}

实现lodash的chunk方法--数组按指定长度拆分

题目

/**
 * @param input
 * @param size
 * @returns {Array}
 */
_.chunk(['a', 'b', 'c', 'd'], 2)
// => [['a', 'b'], ['c', 'd']]

_.chunk(['a', 'b', 'c', 'd'], 3)
// => [['a', 'b', 'c'], ['d']]

_.chunk(['a', 'b', 'c', 'd'], 5)
// => [['a', 'b', 'c', 'd']]

_.chunk(['a', 'b', 'c', 'd'], 0)
// => []

实现

function chunk(arr, length) {
  let newArr = [];
  for (let i = 0; i < arr.length; i += length) {
    newArr.push(arr.slice(i, i + length));
  }
  return newArr;
}

设计一个方法提取对象中所有value大于2的键值对并返回最新的对象

实现:

var obj = { a: 1, b: 3, c: 4 }
foo(obj) // { b: 3, c: 4 }

方法有很多种,这里提供一种比较简洁的写法,用到了ES10Object.fromEntries()

var obj = { a: 1, b: 3, c: 4 }
function foo (obj) {
  return Object.fromEntries(
    Object.entries(obj).filter(([key, value]) => value > 2)
  )
}
var obj2 = foo(obj) // { b: 3, c: 4 }
console.log(obj2)
// ES8中 Object.entries()的作用:
var obj = { a: 1, b: 2 }
var entries = Object.entries(obj); // [['a', 1], ['b', 2]]
// ES10中 Object.fromEntries()的作用:
Object.fromEntries(entries); // { a: 1, b: 2 }

实现一个链表结构

链表结构

阿里前端二面经典手写面试题汇总

看图理解next层级

阿里前端二面经典手写面试题汇总

// 链表 从头尾删除、增加 性能比较好
// 分为很多类 常用单向链表、双向链表

// js模拟链表结构:增删改查

// node节点
class Node {
  constructor(element,next) {
    this.element = element
    this.next = next
  } 
}

class LinkedList {
 constructor() {
   this.head = null // 默认应该指向第一个节点
   this.size = 0 // 通过这个长度可以遍历这个链表
 }
 // 增加O(n)
 add(index,element) {
   if(arguments.length === 1) {
     // 向末尾添加
     element = index // 当前元素等于传递的第一项
     index = this.size // 索引指向最后一个元素
   }
  if(index < 0 || index > this.size) {
    throw new Error('添加的索引不正常')
  }
  if(index === 0) {
    // 直接找到头部 把头部改掉 性能更好
    let head = this.head
    this.head = new Node(element,head)
  } else {
    // 获取当前头指针
    let current = this.head
    // 不停遍历 直到找到最后一项 添加的索引是1就找到第0个的next赋值
    for (let i = 0; i < index-1; i++) { // 找到它的前一个
      current = current.next
    }
    // 让创建的元素指向上一个元素的下一个
    // 看图理解next层级
    current.next = new Node(element,current.next) // 让当前元素指向下一个元素的next
  }

  this.size++;
 }
 // 删除O(n)
 remove(index) {
  if(index < 0 || index >= this.size) {
    throw new Error('删除的索引不正常')
  }
  this.size--
  if(index === 0) {
    let head = this.head
    this.head = this.head.next // 移动指针位置

    return head // 返回删除的元素
  }else {
    let current = this.head
    for (let i = 0; i < index-1; i++) { // index-1找到它的前一个
      current = current.next
    }
    let returnVal = current.next // 返回删除的元素
    // 找到待删除的指针的上一个 current.next.next 
    // 如删除200, 100=>200=>300 找到200的上一个100的next的next为300,把300赋值给100的next即可
    current.next = current.next.next 

    return returnVal
  }
 }
 // 查找O(n)
 get(index) {
  if(index < 0 || index >= this.size) {
    throw new Error('查找的索引不正常')
  }
  let current = this.head
  for (let i = 0; i < index; i++) {
    current = current.next
  }
  return current
 }
}


var ll = new LinkedList()

ll.add(0,100) // Node { ellement: 100, next: null }
ll.add(0,200) // Node { element: 200, next: Node { element: 100, next: null } }
ll.add(1,500) // Node {element: 200,next: Node { element: 100, next: Node { element: 500, next: null } } }
ll.add(300)
ll.remove(0)

console.log(ll.get(2),'get')
console.log(ll.head)

module.exports = LinkedList

数组去重方法汇总

首先:我知道多少种去重方式

1. 双层 for 循环

function distinct(arr) {
    for (let i=0, len=arr.length; i<len; i++) {
        for (let j=i+1; j<len; j++) {
            if (arr[i] == arr[j]) {
                arr.splice(j, 1);
                // splice 会改变数组长度,所以要将数组长度 len 和下标 j 减一
                len--;
                j--;
            }
        }
    }
    return arr;
}

思想: 双重 for 循环是比较笨拙的方法,它实现的原理很简单:先定义一个包含原始数组第一个元素的数组,然后遍历原始数组,将原始数组中的每个元素与新数组中的每个元素进行比对,如果不重复则添加到新数组中,最后返回新数组;因为它的时间复杂度是O(n^2),如果数组长度很大,效率会很低

2. Array.filter() 加 indexOf/includes

function distinct(a, b) {
    let arr = a.concat(b);
    return arr.filter((item, index)=> {
        //return arr.indexOf(item) === index
        return arr.includes(item)
    })
}

思想: 利用indexOf检测元素在数组中第一次出现的位置是否和元素现在的位置相等,如果不等则说明该元素是重复元素

3. ES6 中的 Set 去重

function distinct(array) {
   return Array.from(new Set(array));
}

思想: ES6 提供了新的数据结构 Set,Set 结构的一个特性就是成员值都是唯一的,没有重复的值。

4. reduce 实现对象数组去重复

var resources = [
    { name: "张三", age: "18" },
    { name: "张三", age: "19" },
    { name: "张三", age: "20" },
    { name: "李四", age: "19" },
    { name: "王五", age: "20" },
    { name: "赵六", age: "21" }
]
var temp = {};
resources = resources.reduce((prev, curv) => {
 // 如果临时对象中有这个名字,什么都不做
 if (temp[curv.name]) {

 }else {
    // 如果临时对象没有就把这个名字加进去,同时把当前的这个对象加入到prev中
    temp[curv.name] = true;
    prev.push(curv);
 }
 return prev
}, []);
console.log("结果", resources);

这种方法是利用高阶函数 reduce 进行去重, 这里只需要注意initialValue得放一个空数组[],不然没法push