likes
comments
collection
share

MySQL8索引与调优篇7-索引优化与查询优化

作者站长头像
站长
· 阅读数 16

欢迎大家关注 github.com/hsfxuebao ,希望对大家有所帮助,要是觉得可以的话麻烦给点一下Star哈

都有哪些维度可以进行数据库调优?简言之:

  • 索引失效、没有充分利用到索引一一索引建立
  • 关联查询太多JOIN (设计缺陷或不得已的需求)一一SQL优化
  • 服务器调优及各个参数设置(缓冲、线程数等)一一调整my.cnf
  • 数据过多一一分库分表

关于数据库调优的知识点非常分散。不同的DBMS,不同的公司,不同的职位,不同的项目遇到的问题都不尽相 同。这里我们分为三个章节进行细致讲解。

虽然SQL查询优化的技术有很多,但是大方向上完全可以分成物理查询优化逻辑查询优化两大块。

  • 物理查询优化是通过索引表连接方式等技术来进行优化,这里重点需要掌握索引的使用
  • 逻辑查询优化就是通过SQL等价变换提升查询效率,直白一点就是说,换一种查询写法执行效率可能更高。

1. 数据准备

学员表 插 50万 条, 班级表 插 1万 条。

步骤1:建表

#班级表
CREATE TABLE `class` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`className` VARCHAR(30) DEFAULT NULL,
`address` VARCHAR(40) DEFAULT NULL,
`monitor` INT NULL ,
PRIMARY KEY (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

#学员表
CREATE TABLE `student` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`stuno` INT NOT NULL ,
`name` VARCHAR(20) DEFAULT NULL,
`age` INT(3) DEFAULT NULL,
`classId` INT(11) DEFAULT NULL,
PRIMARY KEY (`id`)
#CONSTRAINT `fk_class_id` FOREIGN KEY (`classId`) REFERENCES `t_class` (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

步骤2:设置参数

  • 命令开启:允许创建函数设置:
set global log_bin_trust_function_creators=1;   
# 不加global只是当前窗口有效。

步骤3:创建函数

保证每条数据都不同。

#随机产生字符串
DELIMITER //
CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255)
BEGIN  
DECLARE chars_str VARCHAR(100) DEFAULT
'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
DECLARE return_str VARCHAR(255) DEFAULT '';
DECLARE i INT DEFAULT 0;
WHILE i < n DO 
SET return_str =CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1)); 
SET i = i + 1;
END WHILE;
RETURN return_str;
END //
DELIMITER ;

#假如要删除
#drop function rand_string;

随机产生班级编号

#用于随机产生多少到多少的编号
DELIMITER //
CREATE FUNCTION rand_num (from_num INT ,to_num INT) RETURNS INT(11)
BEGIN 
DECLARE i INT DEFAULT 0; 
SET i = FLOOR(from_num +RAND()*(to_num - from_num+1))  ;
RETURN i; 
END //
DELIMITER ;

#假如要删除
#drop function rand_num;

步骤4:创建存储过程

#创建往stu表中插入数据的存储过程
DELIMITER //
CREATE PROCEDURE insert_stu(  START INT , max_num INT )
BEGIN 
	DECLARE i INT DEFAULT 0; 
	SET autocommit = 0;   #设置手动提交事务
	REPEAT  #循环
	SET i = i + 1;  #赋值
	INSERT INTO student (stuno, name ,age ,classId ) VALUES
	((START+i),rand_string(6),rand_num(1,50),rand_num(1,1000)); 
	UNTIL i = max_num 
	END REPEAT; 
	COMMIT;  #提交事务
END //
DELIMITER ;

#假如要删除
#drop PROCEDURE insert_stu;

创建往class表中插入数据的存储过程

#执行存储过程,往class表添加随机数据
DELIMITER //
CREATE PROCEDURE `insert_class`( max_num INT )
BEGIN 
	DECLARE i INT DEFAULT 0; 
	SET autocommit = 0;  
	REPEAT 
	SET i = i + 1; 
	INSERT INTO class ( classname,address,monitor ) VALUES
	(rand_string(8),rand_string(10),rand_num(1,100000)); 
	UNTIL i = max_num 
	END REPEAT; 
	COMMIT;
END //
DELIMITER ;

#假如要删除
#drop PROCEDURE insert_class;

步骤5:调用存储过程 class

#执行存储过程,往class表添加1万条数据 
CALL insert_class(10000);

stu

#执行存储过程,往stu表添加50万条数据 
CALL insert_stu(100000,500000);

步骤6:删除某表上的索引 创建存储过程

DELIMITER //
CREATE  PROCEDURE `proc_drop_index`(dbname VARCHAR(200),tablename VARCHAR(200))
BEGIN
   DECLARE done INT DEFAULT 0;
   DECLARE ct INT DEFAULT 0;
   DECLARE _index VARCHAR(200) DEFAULT '';
   DECLARE _cur CURSOR FOR  SELECT  index_name  FROM
information_schema.STATISTICS  WHERE table_schema=dbname AND table_name=tablename AND
seq_in_index=1 AND  index_name <>'PRIMARY' ;
#每个游标必须使用不同的declare continue handler for not found set done=1来控制游标的结束
   DECLARE  CONTINUE HANDLER FOR NOT FOUND set done=2 ;   
#若没有数据返回,程序继续,并将变量done设为2
    OPEN _cur;
    FETCH _cur INTO _index;
    WHILE _index<>'' DO
       SET @str = CONCAT("drop index " , _index , " on " , tablename );
       PREPARE sql_str FROM @str ;
       EXECUTE sql_str;
       DEALLOCATE PREPARE sql_str;
       SET _index='';
       FETCH _cur INTO _index;
    END WHILE;
 CLOSE _cur;
END //
DELIMITER ;

执行存储过程

CALL proc_drop_index("dbname","tablename");

2. 索引失效案例

MySQL中提高性能的一个最有效的方式是对数据表设计合理的索引。索引提供了高效访问数据的方法,并且加快 查询的速度,因此索引对查询的速度有着至关重要的影响。

  • 使用索引可以快速地定位表中的某条记录,从而提高数据库查询的速度,提高数据库的性能。
  • 如果查询时没有使用索引,查询语句就会扫描表中的所有记录。在数据量大的情况下,这样查询的速度会很 慢。

大多数情况下都(默认)采用B+树来构建索引。只是空间列类型的索引使用R-树,并且MEMORY表还支持hash 索引

其实,用不用索引,最终都是优化器说了算。优化器是基于什么的优化器?基于cost开销 (CostBaseOptimizer),它不是基于规则(Rule-BasedOptimzer),也不是基于语义。怎么样开销小就怎么 来。另外,SQL语句是使用索引,跟数据库版本、数据量、数据选择度都有关系

2.1 全值匹配我最爱

系统中经常出现的sql语句如下:

 EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30;
 EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 and classld=4;
 EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 and classld=4 AND name = 'abed';

建立索引

 CREATE INDEX idx.age ON student(age);
 CREATE INDEX idx_age_classid ON student(age, classic!);
 CREATE INDEX idx_age_classid_name ON student(age,classld,name);

建立索引后执行:

 mysql> SELECT SQL_NO_CACHE * FROM student WHERE age=30 and classld=4 AND name = 'abed'Empty set, 1 warning (0.01 sec)

可以看到,创建索引前的查询时间是0.28秒,创建索引后的查询时间是0.01秒,索引帮助我们极大的提高了查 询效率。

2.2 最佳左前缀法则

在MySQL建立联合索引时会遵守最佳左前缀匹配原则,即最左优先,在检索数据时从联合索引的最左边开始匹 配。

举例1:

 EXPLAIN SELECT SQL.NO.CACHE * FROM student WHERE student.age=30 AND student.name = `abcd`;

举例2:

 EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classid=1 AND student.name = 'abed';

举例3:索引idx_age_dassid_name还能否正常使用?

 EXPLAIN SELECT SQL NO CACHE * FROM student WHERE classid=4 AND student.age=30 AND student.name

如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最左前列开始并且不跳过索引中的列。

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abed'

MySQL8索引与调优篇7-索引优化与查询优化 虽然可以正常使用,但是只有部分被使用到了。

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classid=1 AND student.name 'abed';

MySQL8索引与调优篇7-索引优化与查询优化 完全没有使用上索引。

结论:MySQL可以为多个字段创建索引,一个索引可以包括16个字段。对于多列索引,过滤条件要使用索引必须 按照索引建立时的顺序,依次满足,一旦跳过某个字段,索引后面的字段都无法被使用。如果查询条件中没有使用这些字段的第1个字段时,多列(或联合)索引不会被使用。

拓展:Alibaba《Java开发手册》 索引文件具有 B-Tree 的最左前缀匹配特性,如果左边的值未确定,那么无法使用此索引。

2.3 主键插入顺序

对于一个 使用InnoDB存储引擎的表来说,在我们没有显式的创建索引时,表中的数据实际上都是存储在聚簇索引的叶子节点的。而记录又是存储在数据页中的,数据页和记录又是按照记录主键值从小到大的顺序进行排序, 所以如果我们插入的记录的主键值是依次增大的话,那我们每插满一个数据页就换到下一个数据页继续插,而如 果我们插入的主键值忽大忽小的话,就比较麻烦了,假设某个数据页存储的记录已经满了,它存储的主键值在1-100 之间: MySQL8索引与调优篇7-索引优化与查询优化 如果此时再插入一条主键值为 9的记录,那它插入的位置就如下图:

MySQL8索引与调优篇7-索引优化与查询优化

可这个数据页已经满了,再插进来咋办呢?我们需要把当前 页面分裂 成两个页面,把本页中的一些记录移动到新创建的这个页中。页面分裂和记录移位意味着什么?意味着: 性能损耗 !所以如果我们想尽量避免这样无谓的性能损耗,最好让插入的记录的 主键值依次递增 ,这样就不会发生这样的性能损耗了。 所以我们建议:让主键具有 AUTO_INCREMENT ,让存储引擎自己为表生成主键,而不是我们手动插入 ,比如: person_info 表:

CREATE TABLE person_info(
	 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
	 name VARCHAR(100) NOT NULL,
	 birthday DATE NOT NULL,
	 phone_number CHAR(11) NOT NULL,
	 country varchar(100) NOT NULL,
	  PRIMARY KEY (id),
	  KEY idx_name_birthday_phone_number (name(10), birthday, phone_number)
);  

我们自定义的主键列 id 拥有 AUTO_INCREMENT 属性,在插入记录时存储引擎会自动为我们填入自增的主键值。这样的主键占用空间小,顺序写入,减少页分裂。

2.4 计算、函数、类型转换(自动或手动)导致索引失效

  1. 下面2个sql,那个写法比较好?
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';
  1. 创建索引
CREATE INDEX idx_name ON student(NAME);
  1. 第一种:索引优化生效
mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';

MySQL8索引与调优篇7-索引优化与查询优化

mysql>  SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
+---------+---------+--------+------+---------+
| id   | stuno  | name  | age | classId |
+---------+---------+--------+------+---------+
| 5301379 | 1233401 | AbCHEa |  164 |   259 |
| 7170042 | 3102064 | ABcHeB |  199 |   161 |
| 1901614 | 1833636 | ABcHeC |  226 |   275 |
| 5195021 | 1127043 | abchEC |  486 |    72 |
| 4047089 | 3810031 | AbCHFd |  268 |   210 |
| 4917074 |  849096 | ABcHfD |  264 |   442 |
| 1540859 |  141979 | abchFF |  119 |   140 |
| 5121801 | 1053823 | AbCHFg |  412 |   327 |
| 2441254 | 2373276 | abchFJ |  170 |   362 |
| 7039146 | 2971168 | ABcHgI |  502 |   465 |
| 1636826 | 1580286 | ABcHgK |  71 |   262 |
|  374344 |  474345 | abchHL |  367 |   212 |
| 1596534 |  169191 | AbCHHl |  102 |   146 |
         ...
| 5266837 | 1198859 | abclXe |  292 |   298 |
| 8126968 | 4058990 | aBClxE |  316 |   150 |
| 4298305 |  399962 | AbCLXF |  72 |   423 |
| 5813628 | 1745650 | aBClxF |  356 |   323 |
| 6980448 | 2912470 | AbCLXF |  107 |    78 |
| 7881979 | 3814001 | AbCLXF |  89 |   497 |
| 4955576 |  887598 | ABcLxg |  121 |   385 |
| 3653460 | 3585482 | AbCLXJ |  130 |   174 |
| 1231990 | 1283439 | AbCLYH |  189 |   429 |
| 6110615 | 2042637 | ABcLyh |  157 |    40 |
+---------+---------+--------+------+---------+
401 rows in set, 1 warning (0.01 sec)

typerange,表示有使用到索引列,查询时间仅为0.01秒

  1. 第二种:索引优化失效
mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';

MySQL8索引与调优篇7-索引优化与查询优化

mysql>  SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';
+---------+---------+--------+------+---------+
| id   | stuno  | name  | age | classId |
+---------+---------+--------+------+---------+
| 5301379 | 1233401 | AbCHEa |  164 |   259 |
| 7170042 | 3102064 | ABcHeB |  199 |   161 |
| 1901614 | 1833636 | ABcHeC |  226 |   275 |
| 5195021 | 1127043 | abchEC |  486 |    72 |
| 4047089 | 3810031 | AbCHFd |  268 |   210 |
| 4917074 |  849096 | ABcHfD |  264 |   442 |
| 1540859 |  141979 | abchFF |  119 |   140 |
| 5121801 | 1053823 | AbCHFg |  412 |   327 |
| 2441254 | 2373276 | abchFJ |  170 |   362 |
| 7039146 | 2971168 | ABcHgI |  502 |   465 |
| 1636826 | 1580286 | ABcHgK |  71 |   262 |
|  374344 |  474345 | abchHL |  367 |   212 |
| 1596534 |  169191 | AbCHHl |  102 |   146 |
         ...
| 5266837 | 1198859 | abclXe |  292 |   298 |
| 8126968 | 4058990 | aBClxE |  316 |   150 |
| 4298305 |  399962 | AbCLXF |  72 |   423 |
| 5813628 | 1745650 | aBClxF |  356 |   323 |
| 6980448 | 2912470 | AbCLXF |  107 |    78 |
| 7881979 | 3814001 | AbCLXF |  89 |   497 |
| 4955576 |  887598 | ABcLxg |  121 |   385 |
| 3653460 | 3585482 | AbCLXJ |  130 |   174 |
| 1231990 | 1283439 | AbCLYH |  189 |   429 |
| 6110615 | 2042637 | ABcLyh |  157 |    40 |
+---------+---------+--------+------+---------+
401 rows in set, 1 warning (3.62 sec)

type“ALL”,表示没有使用到索引,查询时间为 3.62秒,查询效率较之前低很多。

再举例:

  • student表的字段stuno上设置有索引
CREATE INDEX idx_sno ON student(stuno);
EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE stuno+1 = 900001;

MySQL8索引与调优篇7-索引优化与查询优化

索引优化生效:

EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE stuno = 900000;

再举例:

student表的字段name上设置有索引

CREATE INDEX idx_name ON student(NAME);
EXPLAIN SELECT id, stuno, name FROM student WHERE SUBSTRING(name, 1,3)='abc';

MySQL8索引与调优篇7-索引优化与查询优化

EXPLAIN SELECT id, stuno, NAME FROM student WHERE NAME LIKE 'abc%';

MySQL8索引与调优篇7-索引优化与查询优化

2.5 类型转换导致索引失效

下列哪个sql语句可以用到索引。(假设name字段上设置有索引)

# 未使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name=123;

MySQL8索引与调优篇7-索引优化与查询优化

使用到索引

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name='123';

MySQL8索引与调优篇7-索引优化与查询优化

name=123发生类型转换,索引失效。(隐式的类型转换)

结论:设计实体类属性时,一定要与数据库字段类型相对应。否则,就会出现类型转换的情况

2.6 范围条件右边的列索引失效

  1. 如果系统经常出现的sql如下:
ALTER TABLE student DROP INDEX idx_name;
ALTER TABLE student DROP INDEX idx_age;
ALTER TABLE student DROP INDEX idx_age_classid;

EXPLAIN SELECT SQL_NO_CACHE * FROM student
WHERE student.age=30 AND student.classId>20 AND student.name = 'abc' ;

MySQL8索引与调优篇7-索引优化与查询优化 student.classId>20的右侧的student.name = 'abc'的索引就会失效

  1. 那么索引 idx_age_classid_name 这个索引还能正常使用吗?
  • 不能,范围右边的列不能使用。比如 < <= > >= 和between 等。
  • 如果这种sql比较多,应该建立:
create index idx_age_name_classid on student(age,name,classid);

将范围查询条件放置语句最后:

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abc' AND student.classId>20 ;

MySQL8索引与调优篇7-索引优化与查询优化 直接交换sql语句的位置是没有用的,需要改变联合索引的位置

应用开发中范围查询,例如 金额查询,日期查询往往都是范围查询。应将查询条件放置where语句最后

2.7 不等于(!= 或者<>)索引失效

  • 为name 创建索引
create index ide_name on student(name);
  • 查看索引是否失效
explain select SQL_NO_CACHE *from student where student.name <> 'abc'

MySQL8索引与调优篇7-索引优化与查询优化

或者

explain select SQL_NO_CACHE *from student where student.name != 'abc'

MySQL8索引与调优篇7-索引优化与查询优化

当sql语句中有!=或者<>会出现索引失效的问题,尝试改写为等于,或采用覆盖索引

2.8 is null可以使用索引,is not null无法使用索引

  • IS NULL 可以使用索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age IS NULL;

MySQL8索引与调优篇7-索引优化与查询优化

  • IS NOT NULL 无法触发索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age IS NOT NULL;

MySQL8索引与调优篇7-索引优化与查询优化

结论:最好在设计数据表的时候 就将字段设置为 not null 约束, 拓展,同理,在查询中使用 not like 也无法使用索引,导致全表扫描

2.9 like以通配符%开头索引失效

  • 使用到索引
explain select SQL_NO_CACHE * FROM student where name like 'ab%'

MySQL8索引与调优篇7-索引优化与查询优化

  • 未使用到索引
explain select SQL_NO_CACHE * FROM student where name like '%ab%'

MySQL8索引与调优篇7-索引优化与查询优化

拓展:Alibaba《Java开发手册》 【强制】页面搜索严禁左模糊或者全模糊,如果需要请走搜索引擎来解决。

2.10 OR 前后存在非索引的列,索引失效

在 where 子句中,如果在 OR 前的条件列进行了索引,而在OR 后的条件列没有进行索引,那么索引失效,也就是,让OR的前后条件都具备索引,如果缺少一个就会出现索引失效

因为 OR 的含义就是两个只要满足一个即可,因此只有一个条件列进行了索引时没有意义的。只要有条件列没有索引,就会进行全表扫描,因此 所有的条件列也会失效。

# 未使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 10 OR classid = 100;

MySQL8索引与调优篇7-索引优化与查询优化 因为classid 字段上没有索引,所有上述查询语句没有使用到索引

#使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 10 OR name = 'Abel';

MySQL8索引与调优篇7-索引优化与查询优化

2.11 数据库和表的字符集统一使用utf8mb4

统一使用utf8mb4( 5.5.3版本以上支持)兼容性更好,统一字符集可以避免由于字符集转换产生的乱码。不同的 字符集 进行比较前需要进行转换会造成索引失效。

2.12 练习及一般性建议

假设 index(a,b,c)

MySQL8索引与调优篇7-索引优化与查询优化

一般性建议:

  • 对于单列索引,尽量选择针对当前query过滤性更好的索引
  • 在选择组合索引的时候,当前query中过滤性最好的字段在索引字段顺序中,位置越靠前越好。
  • 在选择组合索引的时候,尽量选择能够包含当前query中的where子句中更多字段的索引。
  • 在选择组合索引的时候,如果某个字段可能出现范围查询时,尽量把这个字段放在索引次序的最后面。

总之,书写SQL语句时,尽量避免造成索引失效的情况

3. 关联查询优化

3.1 数据准备

#分类
CREATE TABLE IF NOT EXISTS `type` (
`id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
`card` INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (`id`)
);
#图书
CREATE TABLE IF NOT EXISTS `book` (
`bookid` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
`card` INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (`bookid`)
);

#向分类表中添加20条记录
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO TYPE(card) VALUES(FLOOR(1 + (RAND() * 20)));

#向图书表中添加20条记录
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO book(card) VALUES(FLOOR(1 + (RAND() * 20)));

3.2 采用左外连接

下面开始EXPLAIN 分析:

EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

MySQL8索引与调优篇7-索引优化与查询优化 结论:typeAll

添加索引优化

ALTER TABLE book ADD INDEX Y ( card);  #【被驱动表】,可以避免全表扫描

EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

MySQL8索引与调优篇7-索引优化与查询优化 可以看到第二行的 type 变为了 refrows 也变成了优化比较明显。这是由左连接特性决定的。 左外连接LEFT JOIN条件用于确定如何从右表搜索行,左边一定都有,所以 右边是我们的关键点,一定需要建立索引。

ALTER TABLE `type` ADD INDEX X (card); #【驱动表】,无法避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

MySQL8索引与调优篇7-索引优化与查询优化

然后

DROP INDEX Y ON book;
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

MySQL8索引与调优篇7-索引优化与查询优化

3.3、采用内连接

drop index X on type;
drop index Y on book;(如果已经删除了可以不用再执行该操作)

换成 inner join(MySQL自动选择驱动表

EXPLAIN  SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card; 

MySQL8索引与调优篇7-索引优化与查询优化

添加索引优化

ALTER  TABLE book ADD INDEX Y ( card);

EXPLAIN  SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;

MySQL8索引与调优篇7-索引优化与查询优化

ALTER  TABLE type ADD INDEX X (card);
 
EXPLAIN  SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;

MySQL8索引与调优篇7-索引优化与查询优化 接着:

DROP INDEX X ON `type`;

EXPLAIN  SELECT SQL_NO_CACHE * FROM TYPE INNER JOIN book ON type.card=book.card;

MySQL8索引与调优篇7-索引优化与查询优化 接着:

ALTER  TABLE `type` ADD INDEX X (card); 

EXPLAIN  SELECT SQL_NO_CACHE * FROM  `type` INNER JOIN book ON type.card=book.card;

MySQL8索引与调优篇7-索引优化与查询优化

接着:

#向type表中添加数据(20条数据)
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));
INSERT INTO `book`(card) VALUES(FLOOR(1 + (RAND() * 20)));

ALTER table book and index Y(card)

EXPLAIN SELECT SQL_NO_CACHE * FROM TYPE INNER JOIN book on type.card = book.card

MySQL8索引与调优篇7-索引优化与查询优化 发现,由于type 表数据大于book表数据,MySQL选择将type作为驱动表

3.4 连接简介

3.4.1 连接的本质

  为了故事的顺利发展,我们先建立两个简单的表并给它们填充一点数据:

mysql> CREATE TABLE t1 (m1 int, n1 char(1));
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE t2 (m2 int, n2 char(1));
Query OK, 0 rows affected (0.02 sec)

mysql> INSERT INTO t1 VALUES(1, 'a'), (2, 'b'), (3, 'c');
Query OK, 3 rows affected (0.00 sec)
Records: 3  Duplicates: 0  Warnings: 0

mysql> INSERT INTO t2 VALUES(2, 'b'), (3, 'c'), (4, 'd');
Query OK, 3 rows affected (0.00 sec)
Records: 3  Duplicates: 0  Warnings: 0Copy to clipboardErrorCopied

  我们成功建立了t1t2两个表,这两个表都有两个列,一个是INT类型的,一个是CHAR(1)类型的,填充好数据的两个表长这样:

mysql> SELECT * FROM t1;
+------+------+
| m1   | n1   |
+------+------+
|    1 | a    |
|    2 | b    |
|    3 | c    |
+------+------+
3 rows in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+------+
| m2   | n2   |
+------+------+
|    2 | b    |
|    3 | c    |
|    4 | d    |
+------+------+
3 rows in set (0.00 sec)
Copy to clipboardErrorCopied

  连接的本质就是把各个连接表中的记录都取出来依次匹配的组合加入结果集并返回给用户。所以我们把t1t2两个表连接起来的过程如下图所示:

MySQL8索引与调优篇7-索引优化与查询优化

  这个过程看起来就是把t1表的记录和t2的记录连起来组成新的更大的记录,所以这个查询过程称之为连接查询连接查询的结果集中包含一个表中的每一条记录与另一个表中的每一条记录相互匹配的组合,像这样的结果集就可以称之为笛卡尔积。因为表t1中有3条记录,表t2中也有3条记录,所以这两个表连接之后的笛卡尔积就有3×3=9行记录。在MySQL中,连接查询的语法也很随意,只要在FROM语句后边跟多个表名就好了,比如我们把t1表和t2表连接起来的查询语句可以写成这样:

mysql> SELECT * FROM t1, t2;
+------+------+------+------+
| m1   | n1   | m2   | n2   |
+------+------+------+------+
|    1 | a    |    2 | b    |
|    2 | b    |    2 | b    |
|    3 | c    |    2 | b    |
|    1 | a    |    3 | c    |
|    2 | b    |    3 | c    |
|    3 | c    |    3 | c    |
|    1 | a    |    4 | d    |
|    2 | b    |    4 | d    |
|    3 | c    |    4 | d    |
+------+------+------+------+
9 rows in set (0.00 sec)

3.4.2 连接过程简介

  如果我们乐意,我们可以连接任意数量张表,但是如果没有任何限制条件的话,这些表连接起来产生的笛卡尔积可能是非常巨大的。比方说3个100行记录的表连接起来产生的笛卡尔积就有100×100×100=1000000行数据!所以在连接的时候过滤掉特定记录组合是有必要的,在连接查询中的过滤条件可以分成两种:

  • 涉及单表的条件

      这种只设计单表的过滤条件我们之前都提到过一万遍了,我们之前也一直称为搜索条件,比如t1.m1 > 1是只针对t1表的过滤条件,t2.n2 < 'd'是只针对t2表的过滤条件。

  • 涉及两表的条件

      这种过滤条件我们之前没见过,比如t1.m1 = t2.m2t1.n1 > t2.n2等,这些条件中涉及到了两个表,我们稍后会仔细分析这种过滤条件是如何使用的。

  下面我们就要看一下携带过滤条件的连接查询的大致执行过程了,比方说下面这个查询语句:

SELECT * FROM t1, t2 WHERE t1.m1 > 1 AND t1.m1 = t2.m2 AND t2.n2 < 'd';

  在这个查询中我们指明了这三个过滤条件:

  • t1.m1 > 1
  • t1.m1 = t2.m2
  • t2.n2 < 'd'

  那么这个连接查询的大致执行过程如下:

  1. 首先确定第一个需要查询的表,这个表称之为驱动表。怎样在单表中执行查询语句我们在前一章都介绍过了,只需要选取代价最小的那种访问方法去执行单表查询语句就好了(就是说从const、ref、ref_or_null、range、index、all这些执行方法中选取代价最小的去执行查询)。此处假设使用t1作为驱动表,那么就需要到t1表中找满足t1.m1 > 1的记录,因为表中的数据太少,我们也没在表上建立二级索引,所以此处查询t1表的访问方法就设定为all吧,也就是采用全表扫描的方式执行单表查询。关于如何提升连接查询的性能我们之后再说,现在先把基本概念捋清楚。所以查询过程就如下图所示:

    MySQL8索引与调优篇7-索引优化与查询优化

      我们可以看到,t1表中符合t1.m1 > 1的记录有两条。

  2. 针对上一步骤中从驱动表产生的结果集中的每一条记录,分别需要到t2表中查找匹配的记录,所谓匹配的记录,指的是符合过滤条件的记录。因为是根据t1表中的记录去找t2表中的记录,所以t2表也可以被称之为被驱动表。上一步骤从驱动表中得到了2条记录,所以需要查询2次t2表。此时涉及两个表的列的过滤条件t1.m1 = t2.m2就派上用场了:

    • t1.m1 = 2时,过滤条件t1.m1 = t2.m2就相当于t2.m2 = 2,所以此时t2表相当于有了t2.m2 = 2t2.n2 < 'd'这两个过滤条件,然后到t2表中执行单表查询。

    • t1.m1 = 3时,过滤条件t1.m1 = t2.m2就相当于t2.m2 = 3,所以此时t2表相当于有了t2.m2 = 3t2.n2 < 'd'这两个过滤条件,然后到t2表中执行单表查询。

        所以整个连接查询的执行过程就如下图所示:

      MySQL8索引与调优篇7-索引优化与查询优化

        也就是说整个连接查询最后的结果只有两条符合过滤条件的记录:

         +------+------+------+------+
        | m1   | n1   | m2   | n2   |
        +------+------+------+------+
        |    2 | b    |    2 | b    |
        |    3 | c    |    3 | c    |
        +------+------+------+------+
      

从上面两个步骤可以看出来,我们上面介绍的这个两表连接查询共需要查询1次t1表,2次t2表。当然这是在特定的过滤条件下的结果,如果我们把t1.m1 > 1这个条件去掉,那么从t1表中查出的记录就有3条,就需要查询3次t2表了。也就是说在两表连接查询中,驱动表只需要访问一次,被驱动表可能被访问多次。

3.4.3 内连接和外连接

  为了大家更好理解后边内容,我们先创建两个有现实意义的表,

CREATE TABLE student (
    number INT NOT NULL AUTO_INCREMENT COMMENT '学号',
    name VARCHAR(5) COMMENT '姓名',
    major VARCHAR(30) COMMENT '专业',
    PRIMARY KEY (number)
) Engine=InnoDB CHARSET=utf8 COMMENT '学生信息表';

CREATE TABLE score (
    number INT COMMENT '学号',
    subject VARCHAR(30) COMMENT '科目',
    score TINYINT COMMENT '成绩',
    PRIMARY KEY (number, score)
) Engine=InnoDB CHARSET=utf8 COMMENT '学生成绩表';

  我们新建了一个学生信息表,一个学生成绩表,然后我们向上述两个表中插入一些数据,为节省篇幅,具体插入过程就不介绍了,插入后两表中的数据如下:

mysql> SELECT * FROM student;
+----------+-----------+--------------------------+
| number   | name      | major                    |
+----------+-----------+--------------------------+
| 20180101 | 杜子腾    | 软件学院                 |
| 20180102 | 范统      | 计算机科学与工程         |
| 20180103 | 史珍香    | 计算机科学与工程         |
+----------+-----------+--------------------------+
3 rows in set (0.00 sec)

mysql> SELECT * FROM score;
+----------+-----------------------------+-------+
| number   | subject                     | score |
+----------+-----------------------------+-------+
| 20180101 | 母猪的产后护理              |    78 |
| 20180101 | 论萨达姆的战争准备          |    88 |
| 20180102 | 论萨达姆的战争准备          |    98 |
| 20180102 | 母猪的产后护理              |   100 |
+----------+-----------------------------+-------+
4 rows in set (0.00 sec)Copy to clipboardErrorCopied

  现在我们想把每个学生的考试成绩都查询出来就需要进行两表连接了(因为score中没有姓名信息,所以不能单纯只查询score表)。连接过程就是从student表中取出记录,在score表中查找number相同的成绩记录,所以过滤条件就是student.number = socre.number,整个查询语句就是这样:

mysql> SELECT * FROM student, score WHERE student.number = score.number;
+----------+-----------+--------------------------+----------+-----------------------------+-------+
| number   | name      | major                    | number   | subject                     | score |
+----------+-----------+--------------------------+----------+-----------------------------+-------+
| 20180101 | 杜子腾    | 软件学院                 | 20180101 | 母猪的产后护理              |    78 |
| 20180101 | 杜子腾    | 软件学院                 | 20180101 | 论萨达姆的战争准备          |    88 |
| 20180102 | 范统      | 计算机科学与工程         | 20180102 | 论萨达姆的战争准备          |    98 |
| 20180102 | 范统      | 计算机科学与工程         | 20180102 | 母猪的产后护理              |   100 |
+----------+-----------+--------------------------+----------+-----------------------------+-------+
4 rows in set (0.00 sec)

  字段有点多哦,我们少查询几个字段:

mysql> SELECT s1.number, s1.name, s2.subject, s2.score FROM student AS s1, score AS s2 WHERE s1.number = s2.number;
+----------+-----------+-----------------------------+-------+
| number   | name      | subject                     | score |
+----------+-----------+-----------------------------+-------+
| 20180101 | 杜子腾    | 母猪的产后护理              |    78 |
| 20180101 | 杜子腾    | 论萨达姆的战争准备          |    88 |
| 20180102 | 范统      | 论萨达姆的战争准备          |    98 |
| 20180102 | 范统      | 母猪的产后护理              |   100 |
+----------+-----------+-----------------------------+-------+
4 rows in set (0.00 sec)

  从上述查询结果中我们可以看到,各个同学对应的各科成绩就都被查出来了,可是有个问题,史珍香同学,也就是学号为20180103的同学因为某些原因没有参加考试,所以在score表中没有对应的成绩记录。那如果老师想查看所有同学的考试成绩,即使是缺考的同学也应该展示出来,但是到目前为止我们介绍的连接查询是无法完成这样的需求的。我们稍微思考一下这个需求,其本质是想:驱动表中的记录即使在被驱动表中没有匹配的记录,也仍然需要加入到结果集。为了解决这个问题,就有了内连接外连接的概念:

  • 对于内连接的两个表,驱动表中的记录在被驱动表中找不到匹配的记录,该记录不会加入到最后的结果集,我们上面提到的连接都是所谓的内连接

  • 对于外连接的两个表,驱动表中的记录即使在被驱动表中没有匹配的记录,也仍然需要加入到结果集。

      在MySQL中,根据选取驱动表的不同,外连接仍然可以细分为2种:

    • 左外连接

      选取左侧的表为驱动表。

    • 右外连接

      选取右侧的表为驱动表。

  可是这样仍然存在问题,即使对于外连接来说,有时候我们也并不想把驱动表的全部记录都加入到最后的结果集。这就犯难了,有时候匹配失败要加入结果集,有时候又不要加入结果集,这咋办,有点儿愁啊。。。噫,把过滤条件分为两种不就解决了这个问题了么,所以放在不同地方的过滤条件是有不同语义的:

  • WHERE子句中的过滤条件

      WHERE子句中的过滤条件就是我们平时见的那种,不论是内连接还是外连接,凡是不符合WHERE子句中的过滤条件的记录都不会被加入最后的结果集。

  • ON子句中的过滤条件

      对于外连接的驱动表的记录来说,如果无法在被驱动表中找到匹配ON子句中的过滤条件的记录,那么该记录仍然会被加入到结果集中,对应的被驱动表记录的各个字段使用NULL值填充。

      需要注意的是,这个ON子句是专门为外连接驱动表中的记录在被驱动表找不到匹配记录时应不应该把该记录加入结果集这个场景下提出的,所以如果把ON子句放到内连接中,MySQL会把它和WHERE子句一样对待,也就是说:内连接中的WHERE子句和ON子句是等价的。

      一般情况下,我们都把只涉及单表的过滤条件放到WHERE子句中,把涉及两表的过滤条件都放到ON子句中,我们也一般把放到ON子句中的过滤条件也称之为连接条件

提示:左外连接和右外连接简称左连接和右连接,所以下面提到的左外连接和右外连接中的`外`字都用括号扩起来,以表示这个字儿可有可无。

3.4.3.1 左(外)连接的语法

  左(外)连接的语法还是挺简单的,比如我们要把t1表和t2表进行左外连接查询可以这么写:

SELECT * FROM t1 LEFT [OUTER] JOIN t2 ON 连接条件 [WHERE 普通过滤条件];

  其中,中括号里的OUTER单词是可以省略的。对于LEFT JOIN类型的连接来说,我们把放在左边的表称之为外表或者驱动表右边的表称之为内表或者被驱动表。所以上述例子中t1就是外表或者驱动表,t2就是内表或者被驱动表。需要注意的是,对于左(外)连接和右(外)连接来说,必须使用ON子句来指出连接条件。了解了左(外)连接的基本语法之后,再次回到我们上面那个现实问题中来,看看怎样写查询语句才能把所有的学生的成绩信息都查询出来,即使是缺考的考生也应该被放到结果集中:

mysql> SELECT s1.number, s1.name, s2.subject, s2.score FROM student AS s1 LEFT JOIN score AS s2 ON s1.number = s2.number;
+----------+-----------+-----------------------------+-------+
| number   | name      | subject                     | score |
+----------+-----------+-----------------------------+-------+
| 20180101 | 杜子腾    | 母猪的产后护理              |    78 |
| 20180101 | 杜子腾    | 论萨达姆的战争准备          |    88 |
| 20180102 | 范统      | 论萨达姆的战争准备          |    98 |
| 20180102 | 范统      | 母猪的产后护理              |   100 |
| 20180103 | 史珍香    | NULL                        |  NULL |
+----------+-----------+-----------------------------+-------+
5 rows in set (0.04 sec)

  从结果集中可以看出来,虽然史珍香并没有对应的成绩记录,但是由于采用的是连接类型为左(外)连接,所以仍然把她放到了结果集中,只不过在对应的成绩记录的各列使用NULL值填充而已。

3.4.3.2 右(外)连接的语法

  右(外)连接和左(外)连接的原理是一样一样的,语法也只是把LEFT换成RIGHT而已:

SELECT * FROM t1 RIGHT [OUTER] JOIN t2 ON 连接条件 [WHERE 普通过滤条件];Copy to clipboardErrorCopied

  只不过驱动表是右边的表,被驱动表是左边的表,具体就不介绍了。

3.4.3.3 内连接的语法

  内连接和外连接的根本区别就是在驱动表中的记录不符合ON子句中的连接条件时不会把该记录加入到最后的结果集,我们最开始介绍的那些连接查询的类型都是内连接。不过之前仅仅提到了一种最简单的内连接语法,就是直接把需要连接的多个表都放到FROM子句后边。其实针对内连接,MySQL提供了好多不同的语法,我们以t1t2表为例看看:

SELECT * FROM t1 [INNER | CROSS] JOIN t2 [ON 连接条件] [WHERE 普通过滤条件];

  也就是说在MySQL中,下面这几种内连接的写法都是等价的:

  • SELECT * FROM t1 JOIN t2;
  • SELECT * FROM t1 INNER JOIN t2;
  • SELECT * FROM t1 CROSS JOIN t2;

  上面的这些写法和直接把需要连接的表名放到FROM语句之后,用逗号,分隔开的写法是等价的:

 SELECT * FROM t1, t2;

  现在我们虽然介绍了很多种内连接的书写方式,不过熟悉一种就好了,这里我们推荐INNER JOIN的形式书写内连接(因为INNER JOIN语义很明确嘛,可以和LEFT JOIN RIGHT JOIN很轻松的区分开)。这里需要注意的是,由于在内连接中ON子句和WHERE子句是等价的,所以内连接中不要求强制写明ON子句。

  我们前面说过,连接的本质就是把各个连接表中的记录都取出来依次匹配的组合加入结果集并返回给用户。不论哪个表作为驱动表,两表连接产生的笛卡尔积肯定是一样的。而对于内连接来说,由于凡是不符合ON子句或WHERE子句中的条件的记录都会被过滤掉,其实也就相当于从两表连接的笛卡尔积中把不符合过滤条件的记录给踢出去,所以对于内连接来说,驱动表和被驱动表是可以互换的,并不会影响最后的查询结果。但是对于外连接来说,由于驱动表中的记录即使在被驱动表中找不到符合ON子句连接条件的记录,所以此时驱动表和被驱动表的关系就很重要了,也就是说左外连接和右外连接的驱动表和被驱动表不能轻易互换。

3.5 join 语句原理

上面的介绍都只是为了唤醒大家对连接内连接外连接这些概念的记忆,这些基本概念是为了真正进入本章主题做的铺垫。真正的重点是MySQL采用了什么样的算法来进行表与表之间的连接,了解了这个之后,大家才能明白为什么有的连接查询运行的快如闪电,有的却慢如蜗牛。

3.5.0 驱动表和被驱动表

join方式连接多个表,本质就是各个表之间数据的循环匹配。MySQL5.5版本之前,MySQL只支持一种表间关联方 式,就是嵌套循环(Nested Loop Join)。如果关联表的数据量很大,则join关联的执行时间会非常长。在MySQL5.5 以后的版本中,MySQL通过引入BNLJ算法来优化嵌套执行。

驱动表就是主表,被驱动表就是从表、三回区动表。

  • 对于内连接来说:
 SELECT * FROM A JOIN E ON ..・

A一定是驱动表吗?不一定,优化器会根据你查询语句做优化,决定先查哪张表。先查询的是驱动表, 反之就是被驱动表。通过explain关键字可以查看。

  • 对于外连接来说:
 SELECT * FROM A LEFT JOIN B ON •・•
 #或
 SELECT * FROM B RIGHT JOIN A ON ・・・

通常,大家会认为A就是驱动表,B就是被驱动表。但也未必。测试如下:

CREATE TABLE a(f1 INT, f2 INT, INDEX(f1))ENGINE=INNODB;
  CREATE TABLE b(f1 INT, f2 INT)ENGINE=INNODB;
                  
  INSERT INTO a VALUES(1,1),(2,2),(3,3),(4,4),(5,5),(6,6);
  INSERT INTO b VALUES(3,3),(4,4),(5,5),(6,6),(7,7),(8,8);
  SELECT * FROM b;
  # 测试1
  EXPLAIN SELECT * FROM a LEFT JOIN b 0N(a.f1=b.f1) WHERE (a.f2=b.f2);
  # 测试2
  EXPLAIN SELECT * FROM a LEFT JOIN b 0N(a.f1=b.f1) AND (a.f2=b.f2);

3.5.1 简单嵌套循环连接(Simple Nested-Loop Join)]

  我们前面说过,对于两表连接来说,驱动表只会被访问一遍,但被驱动表却要被访问到好多遍,具体访问几遍取决于对驱动表执行单表查询后的结果集中的记录条数。对于内连接来说,选取哪个表为驱动表都没关系,而外连接的驱动表是固定的,也就是说左(外)连接的驱动表就是左边的那个表右(外)连接的驱动表就是右边的那个表。我们上面已经大致介绍过t1表和t2表执行内连接查询的大致过程,我们温习一下:

  • 步骤1:选取驱动表,使用与驱动表相关的过滤条件,选取代价最低的单表访问方法来执行对驱动表的单表查询。
  • 步骤2:对上一步骤中查询驱动表得到的结果集中每一条记录,都分别到被驱动表中查找匹配的记录。

  通用的两表连接过程如下图所示:

MySQL8索引与调优篇7-索引优化与查询优化

  如果有3个表进行连接的话,那么步骤2中得到的结果集就像是新的驱动表,然后第三个表就成为了被驱动表,重复上面过程,也就是步骤2中得到的结果集中的每一条记录都需要到t3表中找一找有没有匹配的记录,用伪代码表示一下这个过程就是这样:

for each row in t1 {   #此处表示遍历满足对t1单表查询结果集中的每一条记录
    
    for each row in t2 {   #此处表示对于某条t1表的记录来说,遍历满足对t2单表查询结果集中的每一条记录
    
        for each row in t3 {   #此处表示对于某条t1和t2表的记录组合来说,对t3表进行单表查询
            if row satisfies join conditions, send to client
        }
    }
}Copy to clipboardErrorCopied

  这个过程就像是一个嵌套的循环,所以这种驱动表只访问一次,但被驱动表却可能被多次访问,访问次数取决于对驱动表执行单表查询后的结果集中的记录条数的连接执行方式称之为嵌套循环连接Nested-Loop Join),这是最简单,也是最笨拙的一种连接查询算法。

3.5.2 索引嵌套循环连接(Index Nested-Loop Join)

使用索引加快连接速度

  我们知道在嵌套循环连接步骤2中可能需要访问多次被驱动表,如果访问被驱动表的方式都是全表扫描的话,妈呀,那得要扫描好多次呀~~~ 但是别忘了,查询t2表其实就相当于一次单表扫描,我们可以利用索引来加快查询速度哦。回顾一下最开始介绍的t1表和t2表进行内连接的例子:

SELECT * FROM t1, t2 WHERE t1.m1 > 1 AND t1.m1 = t2.m2 AND t2.n2 < 'd';

  我们使用的其实是嵌套循环连接算法执行的连接查询,再把上面那个查询执行过程表拉下来给大家看一下:

MySQL8索引与调优篇7-索引优化与查询优化

  查询驱动表t1后的结果集中有两条记录,嵌套循环连接算法需要对被驱动表查询2次:

  • t1.m1 = 2时,去查询一遍t2表,对t2表的查询语句相当于:

    SELECT * FROM t2 WHERE t2.m2 = 2 AND t2.n2 < 'd';
    
  • t1.m1 = 3时,再去查询一遍t2表,此时对t2表的查询语句相当于:

    SELECT * FROM t2 WHERE t2.m2 = 3 AND t2.n2 < 'd';
    

  可以看到,原来的t1.m1 = t2.m2这个涉及两个表的过滤条件在针对t2表做查询时关于t1表的条件就已经确定了,所以我们只需要单单优化对t2表的查询了,上述两个对t2表的查询语句中利用到的列是m2n2列,我们可以:

  • m2列上建立索引,因为对m2列的条件是等值查找,比如t2.m2 = 2t2.m2 = 3等,所以可能使用到ref的访问方法,假设使用ref的访问方法去执行对t2表的查询的话,需要回表之后再判断t2.n2 < d这个条件是否成立。

      这里有一个比较特殊的情况,就是假设m2列是t2表的主键或者唯一二级索引列,那么使用t2.m2 = 常数值这样的条件从t2表中查找记录的过程的代价就是常数级别的。我们知道在单表中使用主键值或者唯一二级索引列的值进行等值查找的方式称之为const,而设计MySQL的大佬把在连接查询中对被驱动表使用主键值或者唯一二级索引列的值进行等值查找的查询执行方式称之为:eq_ref

  • n2列上建立索引,涉及到的条件是t2.n2 < 'd',可能用到range的访问方法,假设使用range的访问方法对t2表的查询的话,需要回表之后再判断在m2列上的条件是否成立。

  假设m2n2列上都存在索引的话,那么就需要从这两个里边儿挑一个代价更低的去执行对t2表的查询。当然,建立了索引不一定使用索引,只有在二级索引 + 回表的代价比全表扫描的代价更低时才会使用索引。

  另外,有时候连接查询的查询列表和过滤条件中可能只涉及被驱动表的部分列,而这些列都是某个索引的一部分,这种情况下即使不能使用eq_refrefref_or_null或者range这些访问方法执行对被驱动表的查询的话,也可以使用索引扫描,也就是index的访问方法来查询被驱动表。所以我们建议在真实工作中最好不要使用*作为查询列表,最好把真实用到的列作为查询列表。

3.5.3 基于块的嵌套循环连接(Block Nested-Loop Join)

  扫描一个表的过程其实是先把这个表从磁盘上加载到内存中,然后从内存中比较匹配条件是否满足。现实生活中的表可不像t1t2这种只有3条记录,成千上万条记录都是少的,几百万、几千万甚至几亿条记录的表到处都是。内存里可能并不能完全存放的下表中所有的记录,所以在扫描表前面记录的时候后边的记录可能还在磁盘上,等扫描到后边记录的时候可能内存不足,所以需要把前面的记录从内存中释放掉。我们前面又说过,采用嵌套循环连接算法的两表连接过程中,被驱动表可是要被访问好多次的,如果这个被驱动表中的数据特别多而且不能使用索引进行访问,那就相当于要从磁盘上读好几次这个表,这个I/O代价就非常大了,所以我们得想办法:尽量减少访问被驱动表的次数

  当被驱动表中的数据非常多时,每次访问被驱动表,被驱动表的记录会被加载到内存中,在内存中的每一条记录只会和驱动表结果集的一条记录做匹配,之后就会被从内存中清除掉。然后再从驱动表结果集中拿出另一条记录,再一次把被驱动表的记录加载到内存中一遍,周而复始,驱动表结果集中有多少条记录,就得把被驱动表从磁盘上加载到内存中多少次。所以我们可不可以在把被驱动表的记录加载到内存的时候,一次性和多条驱动表中的记录做匹配,这样就可以大大减少重复从磁盘上加载被驱动表的代价了。

所以设计MySQL的大佬提出了一个join buffer的概念,join buffer就是执行连接查询前申请的一块固定大小的内存,先把若干条驱动表结果集中的记录装在这个join buffer中,然后开始扫描被驱动表,每一条被驱动表的记录一次性和join buffer中的多条驱动表记录做匹配,因为匹配的过程都是在内存中完成的,所以这样可以显著减少被驱动表的I/O代价。使用join buffer的过程如下图所示:

MySQL8索引与调优篇7-索引优化与查询优化

  最好的情况是join buffer足够大,能容纳驱动表结果集中的所有记录,这样只需要访问一次被驱动表就可以完成连接操作了。设计MySQL的大佬把这种加入了join buffer的嵌套循环连接算法称之为基于块的嵌套连接(Block Nested-Loop Join)算法。

  这个join buffer的大小是可以通过启动参数或者系统变量join_buffer_size进行配置,默认大小为262144字节(也就是256KB),最小可以设置为128字节。当然,对于优化被驱动表的查询来说,最好是为被驱动表加上效率高的索引,如果实在不能使用索引,并且自己的机器的内存也比较大可以尝试调大join_buffer_size的值来对连接查询进行优化。

  另外需要注意的是,驱动表的记录并不是所有列都会被放到join buffer中,只有查询列表中的列和过滤条件中的列才会被放到join buffer中,所以再次提醒我们,最好不要把*作为查询列表,只需要把我们关心的列放到查询列表就好了,这样还可以在join buffer中放置更多的记录呢。

3.6 小结

  • 整体效率比较:INLJ>BNLJ>SNLJ

  • 永远用小结果集驱动大结果集(其本质就是减少外层循环的数据数量)(小的度量单位指的是表行数 * 每行大 小)

 select t1.b, t2.* from t1 straight.join t2 on (t1.b=t2.b) where t2.id<=100; #推荐
 select t1.b, t2.* from t2 straight_join t1 on (t1.b=t2.b) where t2.id<=100; #不推荐
  • 被驱动表匹配的条件增加索引(减少内层表的循环匹配次数)
  • 增大join buffer size的大小(一次缓存的数据越多,那么内层包的扫表次数就越少)
  • 减少驱动表不必要的字段查询(字段越少,join buffer 所缓存的数据就越多)

3.7 hash join

从MySQL的8.0.20版本开始将废弃BNLJ,因为从MySQL8.0.18版本开始就加入了hash join默认都会使用hash join

  • Nested Loop: 对于被连接的数据子集较小的情况,Nested Loop是个较好的选择。

  • Hash Join是做大数据集连接时的常用方式,优化器使用两个表中较小(相对较小)的表利用Join Key在内存中 建立散列表,然后扫描较大的表并探测散列表,找出与Hash表匹配的行。

    • 这种方式适用于较小的表完全可以放于内存中的情况,这样总成本就是访问两个表的成本之和。
    • 在表很大的情况下并不能完全放入内存,这时优化器会将它分割成若干不同的分区,不能放入内存的部分 就把该分区写入磁盘的临时段,此时要求有较大的临时段从而尽量提高I/O的性能。
    • 它能够很好的工作于没有索引的大表和并行查询的环境中,并提供最好的性能。大多数人都说它是Join的 重型升降机。Hash Join只能应用于等值连接(如WHERE A.COL1 = B.COL2),这是由Hash的特点决定的。

MySQL8索引与调优篇7-索引优化与查询优化

4. 子查询优化

看看能不能将子查询优化成内外连接查询

MySQL从4.1版本开始支持子查询,使用子查询可以进行SELECT语句的嵌套查询,即一个SELECT查询的结果作为另一个SELECT语句的条件。 子查询可以一次性完成很多逻辑上需要多个步骤才能完成的SQL操作。

子查询是 MySQL 的一项重要的功能,可以帮助我们通过一个 SQL 语句实现比较复杂的查询。但是,子查询的执行效率不高。

原因:

  • 执行子查询时,MySQL需要为内层查询语句的查询结果建立一个临时表 ,然后外层查询语句从临时表中查询记录。查询完毕后,再 撤销这些临时表 。这样会消耗过多的CPU和IO资源,产生大量的慢查询。

  • 子查询的结果集存储的临时表,不论是内存临时表还是磁盘临时表都 不会存在索引 ,所以查询性能会受到一定的影响。

  • 对于返回结果集比较大的子查询,其对查询性能的影响也就越大。

在MySQL中,可以使用连接(JOIN)查询来替代子查询。 连接查询 不需要建立临时表,其 速度比子查询要快 ,如果查询中使用索引的话,性能就会更好。

结论: 尽量不要使用NOT IN 或者 NOT EXISTS,用LEFT JOIN xxx ON xx WHERE xx IS NULL替代

5. 排序优化

5.1 排序优化

问题:

在 WHERE 条件字段上加索引,但是为什么在 ORDER BY 字段上还要加索引呢?

回答:

在MySQL中,支持两种排序方式,分别是FileSortIndex排序

  • Index排序中,索引可以保证数据的有序性,不需要再进行排序,效率更高
  • FileSort排序则一般在内存中进行排序,占用CPU较多。如果待排结果较大,会产生临时文件I/O。到磁盘进 行排序的情况,效率较低。

优化建议:

  • SQL 中,可以在 WHERE 子句和 ORDER BY 子句中使用索引,目的是在 WHERE 子句中 避免全表扫描 ,在 ORDER BY 子句 避免使用 FileSort 排序 。当然,某些情况下全表扫描,或者 FileSort 排序不一定比索引慢。但总的来说,我们还是要避免,以提高查询效率。
  • 尽量使用 Index 完成 ORDER BY 排序。如果 WHEREORDER BY 后面是相同的列就使用单索引列;如果不同就使用联合索引。
  • 无法使用 Index 时,需要对 FileSort 方式进行调优。

5.2 测试

删除student表和class表中已创建的索弓|。

#方式1 :
DROP INDEX idx_monitor ON class;

DROP INDEX idx_cid ON student;
DROP INDEX idx_age ON student;
DROP INDEX idx_name ON student;
DROP INDEX idx_age_name_classid ON student;

#方式2:
 call proc_drop_index('atguigudb2','student );

以下是否能使用到索引,能否去掉using filesort

5.2.1 过程一

explain select sql_no_cache * from student ordey by age,classid

MySQL8索引与调优篇7-索引优化与查询优化

explain select sql_no_cache * from student ordey by age,classid limit 10

MySQL8索引与调优篇7-索引优化与查询优化

5.2.2 过程二 oder by 时不limit,索引失效

#创建索引  
CREATE  INDEX idx_age_classid_name ON student (age,classid,NAME);

#不限制,索引失效
EXPLAIN  SELECT SQL_NO_CACHE * FROM student ORDER BY age,classid; 

MySQL8索引与调优篇7-索引优化与查询优化

#增加limit过滤条件,使用上索引了。
EXPLAIN  SELECT SQL_NO_CACHE * FROM student ORDER BY age,classid LIMIT 10; 

MySQL8索引与调优篇7-索引优化与查询优化

5.2.3 过程三 order by 顺序错误,索引失效

#创建索引age,classid,stuno
CREATE  INDEX idx_age_classid_stuno ON student (age,classid,stuno); 

以下哪些索引失效?

EXPLAIN  SELECT * FROM student ORDER BY classid LIMIT 10;

MySQL8索引与调优篇7-索引优化与查询优化

EXPLAIN  SELECT * FROM student ORDER BY classid,NAME LIMIT 10;  

MySQL8索引与调优篇7-索引优化与查询优化

EXPLAIN  SELECT * FROM student ORDER BY age,classid,stuno LIMIT 10; 

MySQL8索引与调优篇7-索引优化与查询优化

EXPLAIN  SELECT * FROM student ORDER BY age,classid LIMIT 10;

MySQL8索引与调优篇7-索引优化与查询优化

EXPLAIN  SELECT * FROM student ORDER BY age LIMIT 10;

MySQL8索引与调优篇7-索引优化与查询优化

5.2.4 过程四 order by时规则不一致, 索引失效 (顺序错,不索引;方向反,不索引)

EXPLAIN  SELECT * FROM student ORDER BY age DESC, classid ASC LIMIT 10;

MySQL8索引与调优篇7-索引优化与查询优化

EXPLAIN  SELECT * FROM student ORDER BY classid DESC, NAME DESC LIMIT 10;

MySQL8索引与调优篇7-索引优化与查询优化

EXPLAIN  SELECT * FROM student ORDER BY age ASC,classid DESC LIMIT 10; 

MySQL8索引与调优篇7-索引优化与查询优化

EXPLAIN  SELECT * FROM student ORDER BY age DESC, classid DESC LIMIT 10;

MySQL8索引与调优篇7-索引优化与查询优化

oder by 子句,尽量使用index方式排序,避免使用filesort排序

5.2.5 过程五:无过滤,不索引

EXPLAIN  SELECT * FROM student WHERE age=45 ORDER BY classid;

MySQL8索引与调优篇7-索引优化与查询优化

EXPLAIN  SELECT * FROM student WHERE  age=45 ORDER BY classid,NAME; 

MySQL8索引与调优篇7-索引优化与查询优化

EXPLAIN  SELECT * FROM student WHERE  classid=45 ORDER BY age;

MySQL8索引与调优篇7-索引优化与查询优化

EXPLAIN  SELECT * FROM student WHERE  classid=45 ORDER BY age LIMIT 10;

MySQL8索引与调优篇7-索引优化与查询优化

5.2.6 小结

INDEX a_b_c(a,b,c)
order by 能使用索引最左前缀
- ORDER BY a
- ORDER BY a,b
- ORDER BY a,b,c
- ORDER BY a DESC,b DESC,c DESC
如果WHERE使用索引的最左前缀定义为常量,则order by 能使用索引
- WHERE a = const ORDER BY b,c
- WHERE a = const AND b = const ORDER BY c
- WHERE a = const ORDER BY b,c
- WHERE a = const AND b > const ORDER BY b,c
不能使用索引进行排序
- ORDER BY a ASC,b DESC,c DESC  /* 排序不一致 */
- WHERE g = const ORDER BY b,c  /*丢失a索引*/
- WHERE a = const ORDER BY c   /*丢失b索引*/
- WHERE a = const ORDER BY a,d  /*d不是索引的一部分*/
- WHERE a in (...) ORDER BY b,c /*对于排序来说,多个相等条件也是范围查询*/

5.3 案例实战

ORDER BY子句,尽量使用Index方式排序,避免使用FileSort方式排序。

执行案例前先清除student上的索引,只留主键:

DROP INDEX idx_age ON student;
DROP INDEX idx_age_classid_stuno ON student;
DROP INDEX idx_age_classid_name ON student;
#或者
call proc_drop_index('atguigudb2','student');

场景 : 查询年龄为30岁的,且学生编号小于101000的学生,按用户名称排序

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME ;

查询结果如下:

mysql>  SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME;
+---------+--------+--------+------+---------+
| id   | stuno | name  | age | classId |
+---------+--------+--------+------+---------+
|   922 | 100923 | elTLXD |  30 |   249 |
| 3723263 | 100412 | hKcjLb |  30 |    59 |
| 3724152 | 100827 | iHLJmh |  30 |   387 |
| 3724030 | 100776 | LgxWoD |  30 |   253 |
|    30 | 100031 | LZMOIa |  30 |    97 |
| 3722887 | 100237 | QzbJdx |  30 |   440 |
|   609 | 100610 | vbRimN |  30 |   481 |
|   139 | 100140 | ZqFbuR |  30 |   351 |
+---------+--------+--------+------+---------+
8 rows in set, 1 warning (3.16 sec)

结论: type 是 ALL,即最坏的情况。Extra 里还出现了 Using filesort,也是最坏的情况。优化是必须的。

优化思路:

方案一: 为了去掉filesort我们可以把索引建成

#创建新索引
CREATE INDEX idx_age_name ON student(age,NAME);

方案二: 尽量让where的过滤条件和排序使用上索引 建一个三个字段的组合索引:

DROP INDEX idx_age_name ON student;
CREATE INDEX idx_age_stuno_name ON student (age,stuno,NAME);
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
mysql> SELECT SQL_NO_CACHE * FROM student
 -> WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
+-----+--------+--------+------+---------+
| id | stuno | name  | age | classId |
+-----+--------+--------+------+---------+
| 167 | 100168 | AClxEF |  30 |   319 |
| 323 | 100324 | bwbTpQ |  30 |   654 |
| 651 | 100652 | DRwIac |  30 |   997 |
| 517 | 100518 | HNSYqJ |  30 |   256 |
| 344 | 100345 | JuepiX |  30 |   329 |
| 905 | 100906 | JuWALd |  30 |   892 |
| 574 | 100575 | kbyqjX |  30 |   260 |
| 703 | 100704 | KJbprS |  30 |   594 |
| 723 | 100724 | OTdJkY |  30 |   236 |
| 656 | 100657 | Pfgqmj |  30 |   600 |
| 982 | 100983 | qywLqw |  30 |   837 |
| 468 | 100469 | sLEKQW |  30 |   346 |
| 988 | 100989 | UBYqJl |  30 |   457 |
| 173 | 100174 | UltkTN |  30 |   830 |
| 332 | 100333 | YjWiZw |  30 |   824 |
+-----+--------+--------+------+---------+
15 rows in set, 1 warning (0.00 sec)

结果竟然有 filesort的 sql 运行速度,超过了已经优化掉 filesort的 sql,而且快了很多,几乎一瞬间就出现了结果。

结论:

  1. 两个索引同时存在,mysql自动选择最优的方案。(对于这个例子,mysql选择idx_age_stuno_name)。但是, 随着数据量的变化,选择的索引也会随之变化的 。

  2. 当【范围条件】和【group by 或者 order by】的字段出现二选一时,优先观察条件字段的过滤数量,如果过滤的数据足够多,而需要排序的数据并不多时,优先把索引放在范围字段上。反之,亦然。 思考:这里我们使用如下索引,是否可行?

DROP INDEX idx_age_stuno_name ON student;
CREATE INDEX idx_age_stuno ON student(age,stuno);

5.4 filesort算法:双路排序和单路排序

双路排序 (慢)

  • MySQL 4.1之前是使用双路排序 ,字面意思就是两次扫描磁盘,最终得到数据, 读取行指针和order by列 ,对他们进行排序,然后扫描已经排序好的列表,按照列表中的值重新从列表中读取对应的数据输出
  • 从磁盘取排序字段,在buffer进行排序,再从 磁盘取其他字段

取一批数据,要对磁盘进行两次扫描,众所周知,IO是很耗时的,所以在mysql4.1之后,出现了第二种改进的算法,就是单路排序。

单路排序 (快)

从磁盘读取查询需要的 所有列 ,按照order by列在buffer对它们进行排序,然后扫描排序后的列表进行输出, 它的效率更快一些,避免了第二次读取数据。并且把随机IO变成了顺序IO,但是它会使用更多的空 间, 因为它把每一行都保存在内存中了。

结论及引申出的问题

  • 由于单路是后出的,总体而言好过双路
  • 但是用单路有问题

优化策略:

  • 尝试提高 sort_buffer_size
    • 不管用哪种算法,提高这个参数都会提高效率,要根据系统的能力去提高,因为这个参数是针对每个进程 (connection)的 1M-8M之间调整。MySQL5.7, InnoDB存储引擎默认值是 1048576字节,1MB。
    SHOW VARIABLES LIKE '%sort_buffer_size%'
    MySQL8索引与调优篇7-索引优化与查询优化
  • 尝试提高 `max_length_for_sort_data``
    • 提高这个参数,会增加用改进算法的概率。
    SHOW VARIABLES LIKE '%max_length_for_sort_data%' ;  #默认 1024字节
    
    • 但是如果设的太高,数据总容量超出sort_buffer_size的概率就增大,明显症状是高的磁盘I/O活动和低的处理 器使用率。如果需要返回的列的总长度大于max」ength_for_sort_data,使用双路算法,否则使用单路算法。 1024・8192字节之间调整
  • Order by 时select * 是一个大忌。最好只Query需要的字段。
    • 当Query的字段大小总和小于max_length_for_sort_data ,而且排序字段不是TEXT|BLOB类型时,会用改 进后的算法-一单路排序,否则用老算法一一多路排序。
    • 两种算法的数据都有可能超出sort_buffer_size的容量,超出之后,会创建tmp文件进行合并排序,导致多次IO。,但是用单路排序算法的风险会更大一些,所以要提高sort_buffer_size

6. GROUP BY优化

  • group by 使用索引的原则几乎跟order by一致 ,group by 即使没有过滤条件用到索引,也可以直接使用索引。
  • group by 先排序再分组,遵照索引建的最佳左前缀法则
  • 当无法使用索引列,增大 max_length_for_sort_data 和 sort_buffer_size 参数的设置
  • where效率高于having,能写在where限定的条件就不要写在having中
  • 减少使用order by,和业务沟通能不排序就不排序,或将排序放到程序端去做。Order by、group by、distinct这些语句较为耗费CPU,数据库的CPU资源是极其宝贵的。
  • 包含了order by、group by、distinct这些查询的语句,where条件过滤出来的结果集请保持在1000行以内,否则SQL会很慢。

7. 优化分页查询

一般分页查询时,通过创建覆盖索引能够比较好地提高性能。一个常见又非常头疼的问题就是limit 2000000,10 ,此时需要MySQL排序前2000010记录,仅仅返回2000000.2000010的记录,典他记录丢弃,查询排序的代价非常大。

 EXPLAIN SELECT * FROM student LIMIT 2000000,10

MySQL8索引与调优篇7-索引优化与查询优化

优化思路一:

在索引上完成排序分页操作,最后根据主键关联回原表查询所需要的其他列内容。

EXPLAIN SELECT * FROM student t,(SELECT id FROM student ORDER BY id LIMIT 2000000,10) a 
WHERE t.id = a.id;

MySQL8索引与调优篇7-索引优化与查询优化 优化思路二:

该方案适用于主键自增的表,可以把Limit 查询转换成某个位置的查询 。

EXPLAIN SELECT * FROM student WHERE id > 2000000 LIMIT 10;

MySQL8索引与调优篇7-索引优化与查询优化

8. 优先考虑覆盖索引

8.1 什么是覆盖索引?

直接通过二级索引对应的数据找到了查询结果,无需回表

  • 理解方式一:索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行。毕竟索引叶子节点存储了它们索引的数据;当能通过读取索引就可以得到想要的数据,那就不需要读取行了。一个索引包含了满足查询结果的数据就叫做覆盖索引

  • 理解方式二:非聚簇复合索引的一种形式,它包括在查询里的SELECT、JOIN和WHERE子句用到的所有列(即建索引的字段正好是覆盖查询条件中所涉及的字段)。

简单说就是, 索引列+主键 包含 SELECT 到 FROM之间查询的列

举例1:

#删除之前的索引
#举例1:
DROP INDEX idx_age_stuno ON student;

CREATE INDEX idx_age_name ON student (age,NAME);

EXPLAIN SELECT * FROM student WHERE age <> 20;

MySQL8索引与调优篇7-索引优化与查询优化

EXPLAIN SELECT age,NAME FROM student WHERE age <> 20;

MySQL8索引与调优篇7-索引优化与查询优化 上述都使用到了声明到索引,下面的情况则不是:

EXPLAIN SELECT id,age,NAME,classid FROM student WHERE age <> 20;

MySQL8索引与调优篇7-索引优化与查询优化

举例2:

EXPLAIN SELECT * FROM student WHERE NAME LIKE '%abc';

MySQL8索引与调优篇7-索引优化与查询优化

create index idx_age_name on student(age,name)
EXPLAIN SELECT id,age FROM student WHERE NAME LIKE '%abc';

MySQL8索引与调优篇7-索引优化与查询优化 当查询多了classid列时,结果未使用到索引:

EXPLAIN SELECT id,age,name,calssid FROM student WHERE NAME LIKE '%abc';

MySQL8索引与调优篇7-索引优化与查询优化

8.2 覆盖索引的利弊

好处:

  • 避免Innodb表进行索引的二次查询(回表)
    • Innodb是以聚集索引的顺序来存储的,对于Innodb来说,二级索引在叶子节点中所保存的是行的主键信息,如果 是用二级索引查询数据,在查找到相应的键值后,还需通过主键进行二次查询才能获取我们真实所需要的数据。
    • 在覆盖索引中,二级索引的键值中可以获取所要的数据,避免了对主键的二次查询,减少了工0操作,提升了查询 效率。
  • 可以把随机IO变成顺序IO加快查询效率
    • 由于覆盖索引是按键值的II页序存储的,对于10密集型的范围查找来说,对比随机从磁盘读取每一行的数据10要少 的多,因此利用覆盖索引在访问时也可以把磁盘的随机读取的工0转变成索引查找的顺序工0。
    • 由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段

弊端:

  • 索引字段的维护 总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这是业务DBA,或者称为业务数据架构师的工作。

9. 如何给字符串添加索引

有一张教师表,表定义如下:

create table teacher(
	ID bigint unsigned primary key,
	email varchar(64),
	...
)engine=innodb;

讲师要使用邮箱登录,所以业务代码中一定会出现类似于这样的语句:

mysql> select col1, col2 from teacher where email='xxx';

如果email这个字段上没有索引,那么这个语句就只能做 全表扫描

9.1 前缀索引

MySQL是支持前缀索引的。默认地,如果你创建索引的语句不指定前缀长度,那么索引就会包含整个字符串。

mysql> alter table teacher add index index1(email);
#或
mysql> alter table teacher add index index2(email(6));

这两种不同的定义在数据结构和存储上有什么区别呢?下图就是这两个索引的示意图。

MySQL8索引与调优篇7-索引优化与查询优化

以及

MySQL8索引与调优篇7-索引优化与查询优化

如果使用的是index1(即email整个字符串的索引结构),执行顺序是这样的:

  • 从index1索引树找到满足索引值是’zhangssxyz@xxx.com’的这条记录,取得ID2的值;
  • 到主键上查到主键值是ID2的行,判断email的值是正确的,将这行记录加入结果集;
  • 取index1索引树上刚刚查到的位置的下一条记录,发现已经不满足email='zhangssxyz@xxx.com’的条件了,循环结束。

这个过程中,只需要回主键索引取一次数据,所以系统认为只扫描了一行。

如果使用的是index2(即email(6)索引结构),执行顺序是这样的:

  • 从index2索引树找到满足索引值是’zhangs’的记录,找到的第一个是ID1;
  • 到主键上查到主键值是ID1的行,判断出email的值不是’zhangssxyz@xxx.com’,这行记录丢弃;
  • 取index2上刚刚查到的位置的下一条记录,发现仍然是’zhangs’,取出ID2,再到ID索引上取整行然后判断,这次值对了,将这行记录加入结果集;
  • 重复上一步,直到在idxe2上取到的值不是’zhangs’时,循环结束。 也就是说使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本。前面已经讲过区分度,区分度越高越好。因为区分度越高,意味着重复的键值越少。

9.2 前缀索引对覆盖索引的影响

结论:

使用前缀索引就用不上覆盖索引对查询性能的优化了,这也是你在选择是否使用前缀索引时需要考虑的一个因素。

10. 索引下推

Index Condition Pushdown(ICP)是MySQL 5.6中新特性,是一种在存储引擎层使用索引过滤数据的一种优化方式。 ICP可以减少存储引擎访问基表的次数以及MySQL服务器访问存储引擎的次数。

10.1 使用前后的扫描过程

在不使用ICP索引扫描的过程:

  • storage层:只将满足index key条件的索引记录对应的整行记录取出,返回给server层

  • server 层:对返回的数据,使用后面的where条件过滤,直至返回最后一行。

MySQL8索引与调优篇7-索引优化与查询优化

MySQL8索引与调优篇7-索引优化与查询优化 使用ICP扫描的过程:

  • storage层:
    • 首先将index key条件满足的索引记录区间确定,然后在索引上使用index filter进行过滤。将满足的index filter条件的索引记录才去回表取出整行记录返回server层。不满足index filter条件的索引记录丢弃,不回表、也不会返回server层。
  • server 层:
    • 对返回的数据,使用table filter条件做最后的过滤。

MySQL8索引与调优篇7-索引优化与查询优化

MySQL8索引与调优篇7-索引优化与查询优化 使用前后的成本差别:

使用前,存储层多返回了需要被index filter过滤掉的整行记录

使用ICP后,直接就去掉了不满足index filter条件的记录,省去了他们回表和传递server层的成本。

ICP的 加速效果 取决于在存储引擎内通过 ICP筛选 掉的数据的比例。

10.2 ICP 的开启和关闭

  • 默认情况下启用索引条件下推。可以通过设置系统变量optimize_switch控制: index_condition_pushdown
 # 打开索引下推
 SET optimizer_switch = 'index_condition_pushdown=off';
 # 关闭索引下推             ]
 SET optimizer_switch = 'index_condition_pushdown=on';
  • 当使用索引条件下推时,EXPLA工N语句输出结果中Extra列内容显示为Using index condition

10.3 ICP使用案例

案例1:

SELECT * FROM tuser
WHERE NAME LIKE '张%'
AND age = 10
AND ismale = 1;

MySQL8索引与调优篇7-索引优化与查询优化

案例2:

MySQL8索引与调优篇7-索引优化与查询优化

10.4 开启和关闭ICP的性能对比

创建存储过程,主要目的就是插入很多000001的数据,这样查询的时候为了在存储引擎层做过滤,减少10,也为 了减少缓冲池(缓存数据页,没有IO)的作用。

DELIMITER //
 CREATE PROCEDURE insert_people( max_num INT ) BEGIN DECLARE i INT DEFAULT 0SET autocommit = 0; REPEAT
  SET i = i + 1INSERT INTO people ( zipcode, firstname, lastname, address ) VALUES000001 ',''赵''天津 市)I                I
  UNTIL i = max.num END REPEAT; COMMIT;
 END //
 DELIMITER ;

调用存储过程

 call insert_people(1000000);

首先打开profiling。

set profiling=1;

执行SQL语句,此时默认打开索引下推。

SELECT * FROM people WHERE zipcode=' 000001 ' AND lastname LIKE%%

再次执行SQL语句,不使用索引下推

SELECT /*+ no_icp (people) */ * FROM people WHERE zipcode=¹ 000001 ' AND lastname LIKE '%%';

查看当前会话所产生的所有profiles

 show profilesXG;

结果如下。

MySQL8索引与调优篇7-索引优化与查询优化 多次测试效率对比来看,使用 ICP 优化查询效率会好一些,这里建议多存储一些数据效果更明显。

10.5 ICP的使用条件

ICP的使用条件:

  1. 只能用于二级索引(secondary index)
  2. explain显示的执行计划中type值(join 类型)为 range 、 ref 、 eq_ref 或者ref_or_null。
  3. 并非全部where条件都可以用ICP筛选,如果where条件的字段不在索引列中,还是要读取整表的记录到server端做where过滤。
  4. ICP可以用于MyISAM和InnnoDB存储引擎
  5. MySQL 5.6版本的不支持分区表的ICP功能,5.7版本的开始支持。
  6. 当SQL使用覆盖索引时,不支持ICP优化方法。
  7. 相关子查询的条件不能使用ICP

11. 普通索引 vs 唯一索引

从性能的角度考虑,你选择唯一索引还是普通索引呢?选择的依据是什么呢?

假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引,假设字段 k 上的值都不重复。这个表的建表语句是:

这个表的建表语句是:

mysql> create table test(
		id int primary key,
		k int not null,
		name varchar(16),
		index (k)
	)engine=InnoDB;

表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6)。

11.1 查询过程

假设,执行查询的语句是 select id from test where k=5。

  • 对于普通索引来说,查找到满足条件的第一个记录(5,500)后,需要查找下一个记录,直到碰到第一个不满足k=5条件的记录。
  • 对于唯一索引来说,由于索引定义了唯一性,查找到第一个满足条件的记录后,就会停止继续检索。 那么,这个不同带来的性能差距会有多少呢?答案是,微乎其微 。

11.2 更新过程

为了说明普通索引和唯一索引对更新语句性能的影响这个问题,介绍一下changebuffer。

当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话,在不影响数据一致性的前提下, InooDB会将这些更新操作缓存在change buffer中 ,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行changebuffer中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。

将change buffer中的操作应用到原数据页,得到最新结果的过程称为merge。除了 访问这个数据页 会触发merge外,系统有 后台线程会定期 merge。在数据库正常关闭(shutdown) 的过程中,也会执行merge操作。

如果能够将更新操作先记录在change buffer, 减少读磁盘 ,语句的执行速度会得到明显的提升。而且,数据读入内存是需要占用 buffer pool 的,所以这种方式还能够 避免占用内存,提高内存利用率。 唯一索引的更新就不能使用change buffer ,实际上也只有普通索引可以使用。

如果要在这张表中插入一个新记录(4,400)的话,InnoDB的处理流程是怎样的?

11.3 change buffer的使用场景

  • 普通索引和唯一索引应该怎么选择?其实,这两类索引在查询能力上是没差别的,主要考虑的是对 更新性能 的影响。所以,建议你 尽量选择普通索引

  • 在实际使用中会发现, 普通索引 和change buffer 的配合使用,对于 数据量大 的表的更新优化还是很明显的。

  • 如果所有的更新后面,都马上 伴随着对这个记录的查询 ,那么你应该 关闭change buffer。而在其他情况下,change buffer都能提升更新性能。

  • 由于唯一索引用不上change buffer的优化机制,因此如果 业务可以接受 ,从性能角度出发建议优先考虑非唯一索引。但是如果"业务可能无法确保"的情况下,怎么处理呢?

    • 首先, 业务正确性优先 。我们的前提是“业务代码已经保证不会写入重复数据”的情况下,讨论性能问题。如果业务不能保证,或者业务就是要求数据库来做约束,那么没得选,必须创建唯一索引。这种情况下,本节的意义在于,如果碰上了大量插入数据慢、内存命中率低的时候,给你多提供一个排查思路。
    • 然后,在一些“ 归档库 ”的场景,你是可以考虑使用唯一索引的。比如,线上数据只需要保留半年,然后历史数据保存在归档库。这时候,归档数据已经是确保没有唯一键冲突了。要提高归档效率,可以考虑把表里面的唯一索引改成普通索引。

12. 其它查询优化策略

12.1 EXISTS 和 IN 的区分

问题: 不太理解哪种情况下应该使用 EXISTS,哪种情况应该用 IN。选择的标准是看能否使用表的索引吗? 回答: 索引是个前提,其实选择与否还是要看表的大小。你可以将选择的标准理解为小表驱动大表。在这种方式下效率 是最高的。 比如下面这样:

SELECT * FROM A WHERE cc IN (SELECT cc FROM B)
SELECT * FROM A WHERE EXISTS (SELECT cc FROM B WHERE B.cc=A.cc)

A小于B时,用EXISTS 因为EXISTS的实现,相当于外表循环,实现的逻辑类似于:

for i in A
    for j in B
      if j.cc == i.cc then ...

B小于A时用IN,因为实现的逻辑类似于:

 for i in B
    for j in A
      if j.cc == i.cc then ...

哪个表小就用哪个表来驱动,A表小就用EXISTS, B表小就用IN

12.2 COUNT(*)与COUNT(具体字段)效率

问:在 MySQL 中统计数据表的行数,可以使用三种方式: SELECT COUNT(*) 、 SELECT COUNT(1) 和 SELECT COUNT(具体字段) ,使用这三者之间的查询效率是怎样的?

答: 前提:如果你要统计的是某个字段的非空数据行数,则另当别论,毕竟比较执行效率的前提是结果一样才可以。

  • 环节1: COUNT(*)和COUNT(1)都是对所有结果进行COUNT, COUNT(*)COUNT(1)本质上并没有区别(二者 执行时间可能略有差别,不过你还是可以把它俩的执行效率看成是相等的)。如果有WHERE子句,则是对所有 符合筛选条件的数据行进行统计;如果没有WHERE子句,则是对数据表的数据行数进行统计。

  • 环节2:如果是MyISAM存储引擎,统计数据表的行数只需要0⑴的复杂度,这是因为每张MyISAM的数据表都 有一个meta信息存储了 row.count值,而一致性则由表级锁来保证。如果是InnoDB存储引擎,因为InnoDB支持事务,采用行级锁和MVCC机制,所以无法像MyISAM一样,维护一 个row_count变量,因此需要采用扫描全表,是0(n)的复杂度,进行循环+计数的方式来完成统计。

  • 环节3:在InnoDB引擎中,如果采用COUNT(具体字段)来统计数据行数,要尽量采用二级索引。因为主键采用的 索引是聚簇索引,聚簇索引包含的信息多,明显会大于二级索引(非聚簇索引)。对于COUNT(*)COUNT(1) 来说,它们不需要查找具体的行,只是统计行数,系统会自动采用占用空间更小的二级索引来进行统计。

如果有多个二级索引,会使用key_len小的二级索引进行扫描。当没有二级索引的时候,才会采用主键索引来进 行统计。

12.3 关于SELECT(*)

在表查询中,建议明确字段,不要使用 * 作为查询的字段列表,推荐使用SELECT <字段列表> 查询。原因:

  • MySQL 在解析的过程中,会通过 查询数据字典 将"*"按序转换成所有列名,这会大大的耗费资源和时间。

  • 无法使用 覆盖索引

12.4 LIMIT 1 对优化的影响

针对的是会扫描全表的 SQL 语句,如果你可以确定结果集只有一条,那么加上 LIMIT 1的时候,当找到一条结果的时候就不会继续扫描了,这样会加快查询速度。

如果数据表已经对字段建立了唯一索引,那么可以通过索引进行查询,不会全表扫描的话,就不需要加上 LIMIT 1 了。

12.5 多使用COMMIT

只要有可能,在程序中尽量多使用 COMMIT,这样程序的性能得到提高,需求也会因为 COMMIT 所释放 的资源而减少。

COMMIT 会有所释放的资源:

  • 回滚段上用于恢复数据的信息
  • 被程序语句获得的锁
  • redo / undo log buffer 中的空间
  • 管理上述 3 种资源中的内部花费

13. 淘宝数据库,主键如何设计的?

聊一个实际问题:淘宝的数据库,主键是如何设计的?

某些错的离谱的答案还在网上年复一年的流传着,甚至还成为了所谓的MySQL军规。 其中,一个最明显的错误就是关于MySQL的主键设计。

大部分人的回答如此自信:用8字节的 BIGINT 做主键,而不要用INT。 错!

这样的回答,只站在了数据库这一层,而没有 从业务的角度 思考主键。主键就是一个自增ID吗?站在 2022年的新年档口,用自增做主键,架构设计上可能 连及格都拿不到 。

13.1 自增ID的问题

自增ID做主键,简单易懂,几乎所有数据库都支持自增类型,只是实现上各自有所不同而已。自增ID除了简单,其他都是缺点,总体来看存在以下几方面的问题:

  1. 可靠性不高 存在自增ID回溯的问题,这个问题直到最新版本的MySQL 8.0才修复。
  2. 安全性不高 对外暴露的接口可以非常容易猜测对应的信息。比如:/User/1/这样的接口,可以非常容易猜测用户ID的值为多少,总用户数量有多少,也可以非常容易地通过接口进行数据的爬取。
  3. 性能差 自增ID的性能较差,需要在数据库服务器端生成。
  4. 交互多 业务还需要额外执行一次类似 last_insert_id() 的函数才能知道刚才插入的自增值,这需要多一次的网络交互。在海量并发的系统中,多1条SQL,就多一次性能上的开销。
  5. 局部唯一性 最重要的一点,自增ID是局部唯一,只在当前数据库实例中唯一,而不是全局唯一,在任意服务器间都是唯一的。对于目前分布式系统来说,这简直就是噩梦。

13.2 业务字段做主键

为了能够唯一地标识一个会员的信息,需要为 会员信息表 设置一个主键。那么,怎么为这个表设置主键,才能达到我们理想的目标呢? 这里我们考虑业务字段做主键。

表数据如下:

MySQL8索引与调优篇7-索引优化与查询优化

在这个表里,哪个字段比较合适呢?

选择卡号(cardno)

会员卡号(cardno)看起来比较合适,因为会员卡号不能为空,而且有唯一性,可以用来 标识一条会员记录。

mysql> CREATE TABLE demo.membermaster
-> (
-> cardno CHAR(8) PRIMARY KEY, -- 会员卡号为主键
-> membername TEXT,
-> memberphone TEXT,
-> memberpid TEXT,
-> memberaddress TEXT,
-> sex TEXT,
-> birthday DATETIME
-> );
Query OK, 0 rows affected (0.06 sec)

不同的会员卡号对应不同的会员,字段“cardno”唯一地标识某一个会员。如果都是这样,会员卡号与会员一一对应,系统是可以正常运行的。

但实际情况是, 会员卡号可能存在重复使用 的情况。比如,张三因为工作变动搬离了原来的地址,不再到商家的门店消费了 (退还了会员卡),于是张三就不再是这个商家门店的会员了。但是,商家不想让这个会 员卡空着,就把卡号是“10000001”的会员卡发给了王五。

从系统设计的角度看,这个变化只是修改了会员信息表中的卡号是“10000001”这个会员 信息,并不会影响到数据一致性。也就是说,修改会员卡号是“10000001”的会员信息, 系统的各个模块,都会获取到修改后的会员信息,不会出现“有的模块获取到修改之前的会员信息,有的模块获取到修改后的会员信息,而导致系统内部数据不一致”的情况。因此,从 信息系统层面 上看是没问题的。

但是从使用 系统的业务层面 来看,就有很大的问题 了,会对商家造成影响。 比如,我们有一个销售流水表(trans),记录了所有的销售流水明细。2020 年 12 月 01 日,张三在门店购买了一本书,消费了 89 元。那么,系统中就有了张三买书的流水记录,如下所示:

接着,我们查询一下 2020 年 12 月 01 日的会员销售记录:

MySQL8索引与调优篇7-索引优化与查询优化

mysql> SELECT b.membername,c.goodsname,a.quantity,a.salesvalue,a.transdate
-> FROM demo.trans AS a
-> JOIN demo.membermaster AS b
-> JOIN demo.goodsmaster AS c
-> ON (a.cardno = b.cardno AND a.itemnumber=c.itemnumber);
+------------+-----------+----------+------------+---------------------+
| membername | goodsname | quantity | salesvalue | transdate      |
+------------+-----------+----------+------------+---------------------+
| 张三    | 书    | 1.000  | 89.00   | 2020-12-01 00:00:00 |
+------------+-----------+----------+------------+---------------------+
1 row in set (0.00 sec)

如果会员卡“10000001”又发给了王五,我们会更改会员信息表。导致查询时:

mysql> SELECT b.membername,c.goodsname,a.quantity,a.salesvalue,a.transdate
-> FROM demo.trans AS a
-> JOIN demo.membermaster AS b
-> JOIN demo.goodsmaster AS c
-> ON (a.cardno = b.cardno AND a.itemnumber=c.itemnumber);
+------------+-----------+----------+------------+---------------------+
| membername | goodsname | quantity | salesvalue | transdate      |
+------------+-----------+----------+------------+---------------------+
| 王五    | 书    | 1.000  | 89.00   | 2020-12-01 00:00:00 |
+------------+-----------+----------+------------+---------------------+
1 row in set (0.01 sec)

这次得到的结果是:王五在 2020 年 12 月 01 日,买了一本书,消费 89 元。显然是错误的! 结论:千万不能把会员卡号当做主键。

选择会员电话 或 身份证号

会员电话可以做主键吗?不行的。在实际操作中,手机号也存在 被运营商收回 ,重新发给别人用的情况。

那身份证号行不行呢?好像可以。因为身份证决不会重复,身份证号与一个人存在一一对 应的关系。可问题是,身份证号属于 个人隐私 ,顾客不一定愿意给你。要是强制要求会员必须登记身份证号,会把很多客人赶跑的。其实,客户电话也有这个问题,这也是我们在设计会员信息表的时候,允许身份证号和电话都为空的原因。

所以,建议尽量不要用跟业务有关的字段做主键。毕竟,作为项目设计的技术人员,我们谁也无法预测在项目的整个生命周期中,哪个业务字段会因为项目的业务需求而有重复,或者重用之类的情况出现。

经验: 刚开始使用 MySQL 时,很多人都很容易犯的错误是喜欢用业务字段做主键,想当然地认为了解业务需求,但实际情况往往出乎意料,而更改主键设置的成本非常高。

13.3 淘宝的主键设计

在淘宝的电商业务中,订单服务是一个核心业务。请问, 订单表的主键 淘宝是如何设计的呢?是自增ID吗?

打开淘宝,看一下订单信息:

MySQL8索引与调优篇7-索引优化与查询优化

从上图可以发现,订单号不是自增ID!我们详细看下上述4个订单号:

1550672064762308113
1481195847180308113
1431156171142308113
1431146631521308113

订单号是19位的长度,且订单的最后5位都是一样的,都是08113。且订单号的前面14位部分是单调递增的。

大胆猜测,淘宝的订单ID设计应该是:

订单ID = 时间 + 去重字段 + 用户ID后6位尾号

这样的设计能做到全局唯一,且对分布式系统查询及其友好。

13.4 推荐的主键设计

可通过改变UUID的时间排序,将时分秒放在前面,而不是默认的秒分时,就可做到有序 非核心业务 :对应表的主键自增ID,如告警、日志、监控等信息。

核心业务主键设计至少应该是全局唯一且是单调递增。全局唯一保证在各系统之间都是唯一的,单调递增是希望插入时不影响数据库性能。

这里推荐最简单的一种主键设计:UUID。

UUID的特点: 全局唯一,占用36字节,数据无序,插入性能差。

认识UUID:

  • 为什么UUID是全局唯一的?
  • 为什么UUID占用36个字节?
  • 为什么UUID是无序的? MySQL数据库的UUID组成如下所示:
UUID = 时间+UUID版本(16字节)- 时钟序列(4字节) - MAC地址(12字节)

以UUID值e0ea12d4-6473-11eb-943c-00155dbaa39d举例:

MySQL8索引与调优篇7-索引优化与查询优化 为什么UUID是全局唯一的?

在UUID中时间部分占用60位,存储的类似TIMESTAMP的时间戳,但表示的是从1582-10-15 00:00:00.00到现在的100ns的计数。可以看到UUID存储的时间精度比TIMESTAMPE更高,时间维度发生重复的概率降低到1/100ns。 时钟序列是为了避免时钟被回拨导致产生时间重复的可能性。MAC地址用于全局唯一。

为什么UUID占用36个字节? UUID根据字符串进行存储,设计时还带有无用"-"字符串,因此总共需要36个字节。

为什么UUID是随机无序的呢? 因为UUID的设计中,将时间低位放在最前面,而这部分的数据是一直在变化的,并且是无序。

改造UUID

若将时间高低位互换,则时间就是单调递增的了,也就变得单调递增了。MySQL 8.0可以更换时间低位和时间高位的存储方式,这样UUID就是有序的UUID了。

MySQL 8.0还解决了UUID存在的空间占用的问题,除去了UUID字符串中无意义的"-"字符串,并且将字符串用二进制类型保存,这样存储空间降低为了16字节。

可以通过MySQL8.0提供的uuid_to_bin函数实现上述功能,同样的,MySQL也提供了bin_to_uuid函数进行

转化:

SET @uuid = UUID();
SELECT @uuid,uuid_to_bin(@uuid),uuid_to_bin(@uuid,TRUE);

MySQL8索引与调优篇7-索引优化与查询优化

通过函数uuid_to_bin(@uuid,true)将UUID转化为有序UUID了。全局唯一 + 单调递增,这不就是我们想要的主键!

有序UUID性能测试

16字节的有序UUID,相比之前8字节的自增ID,性能和存储空间对比究竟如何呢? 我们来做一个测试,插入1亿条数据,每条数据占用500字节,含有3个二级索引,最终的结果如下所示:

MySQL8索引与调优篇7-索引优化与查询优化

从上图可以看到插入1亿条数据有序UUID是最快的,而且在实际业务使用中有序UUID在 业务端就可以生成 。 还可以进一步减少SQL的交互次数。另外,虽然有序UUID相比自增ID多了8个字节,但实际只增大了3G的存储空间,还可以接受

在当今的互联网环境中,非常不推荐自增ID作为主键的数据库设计。更推荐类似有序UUID的全局唯一的实现。

另外在真实的业务系统中,主键还可以加入业务和系统属性,如用户的尾号,机房的信息等。这样的主键设计就更为考验架构师的水平了。

如果不是MySQL8.0 肿么办?

手动赋值字段做主键!

比如,设计各个分店的会员表的主键,因为如果每台机器各自产生的数据需要合并,就可能会出现主键重复的问题。

可以在总部 MySQL 数据库中,有一个管理信息表,在这个表中添加一个字段,专门用来记录当前会员编号的最大值。

门店在添加会员的时候,先到总部 MySQL 数据库中获取这个最大值,在这个基础上加 1,然后用这个值作为新会员的“id”,同时,更新总部 MySQL 数据库管理信息表中的当 前会员编号的最大值。

这样一来,各个门店添加会员的时候,都对同一个总部 MySQL 数据库中的数据表字段进 行操作,就解决了各门店添加会员时会员编号冲突的问题。

参考文章

MySQL从入门到精通 MySQL是怎样运行的 从根儿上理解MySQL 第10-17章 《MySQL技术内幕:InnoDB存储引擎(第2版)》 《数据库索引设计与优化》