likes
comments
collection
share

Java&C++题解与拓展——leetcode940.不同的子序列 II【么的新知识?】

作者站长头像
站长
· 阅读数 10
每日一题做题记录,参考官方和三叶的题解

题目要求

Java&C++题解与拓展——leetcode940.不同的子序列 II【么的新知识?】

Java&C++题解与拓展——leetcode940.不同的子序列 II【么的新知识?】

思路一:动态规划+转移优化

  • 定义一个数组记录以每个字母f[i]f[i]f[i]为结尾会有几种子序列;
  • 遍历字符串,计算每个字符对应的f[i]f[i]f[i]
    • 第一个字符仅有自己,f[0]=res=1f[0]=res=1f[0]=res=1
    • 后续子串的构造方式相似:
      • 为在之前出现的所有子串末尾加上自己,并加上仅有自己的单字符串,表示为f[i]=res+1f[i]=res+1f[i]=res+1
      • 更新答案字符串为res+=f[i]res+=f[i]res+=f[i]
      • 但存在字母重复的可能,所以要提前存好更新前的f[i]f[i]f[i],也就是上一次对该字符的计算结果pre,然后计算二者差值加在答案上,表示为res+=f[i]−preres+=f[i]-preres+=f[i]pre

Java

class Solution {
    public int distinctSubseqII(String s) {
        int MOD = (int)1e9+7;
        int res = 0;
        int[] f = new int[26];
        for (int i = 0; i < s.length(); i++) {
            int cur = s.charAt(i) - 'a', pre = f[cur];
            f[cur] = (res + 1) % MOD;
            res = ((res + f[cur] - pre) % MOD + MOD) % MOD;
        }
        return res;
    }
}
  • 时间复杂度:O(n×C)O(n\times C)O(n×C)
  • 空间复杂度:O(C)O(C)O(C)

C++

class Solution {
public:
    int distinctSubseqII(string s) {
        int MOD = (int)1e9+7;
        int res = 0;
        int f[26];
        memset(f, 0, sizeof(f));
        for (int i = 0; i < s.size(); i++) {
            int cur = s[i] - 'a', pre = f[cur];
            f[cur] = (res + 1) % MOD;
            res = ((res + f[cur] - pre) % MOD + MOD) % MOD;
        }
        return res;
    }
};
  • 时间复杂度:O(n×C)O(n\times C)O(n×C)
  • 空间复杂度:O(C)O(C)O(C)

Rust

impl Solution {
    pub fn distinct_subseq_ii(s: String) -> i32 {
        let MOD = 1000000007;
        let mut res = 0;
        let mut f = vec![0; 26];
        for cur in s.chars() {
            let i = cur as u8 - 'a' as u8;
            let pre = f[i as usize];
            f[i as usize] = (res + 1) % MOD;
            res = ((res + f[i as usize] - pre) % MOD + MOD) % MOD;
        }
        res
    }
}
  • 时间复杂度:O(n×C)O(n\times C)O(n×C)
  • 空间复杂度:O(C)O(C)O(C)

思路二:求和(调api)

  • 思路和上面相似,但更简单粗暴一点,f[i]f[i]f[i]依旧用于记录以当前字符为末尾的子串数量,在每次遍历中计算整个数组的和(即当前的全部子串数量),然后加上自己的单字符串,表示为f[i]=sum(f)+1f[i]=sum(f)+1f[i]=sum(f)+1,答案即为整个数组的和;
  • 此处规避掉了重复字符的讨论,因为相同字符后面的会覆盖前面的,可以看作每次遍历都在已有子串的基础上加一个字符【md我在说什么,举个例子吧】;
  • 栗子【vonvv】:
    • 当前遍历字符f[i]f[i]f[i]子串
      v111v
      o222voo
      n444vnvononn
      v888vvvovovvnvvonvonvnvv
      v151515vvvovovvnvvonvonvnvvvvvovvovvvnvvvonvvonvvnvvvvv
    • 最终即为三个字符对应值相加f[o]+f[n]+f[v]=2+4+15=21f[o]+f[n]+f[v]=2+4+15=21f[o]+f[n]+f[v]=2+4+15=21
  • 注意!!!因为要计算sum(f)sum(f)sum(f),这值可能会超级大,所以要用long型!

Java

class Solution {
    public int distinctSubseqII(String s) {
        int MOD = (int)1e9+7;
        long[] f = new long[26];
        for (char cur : s.toCharArray()) {
            f[cur - 'a'] = Arrays.stream(f).sum() % MOD + 1;
        }
        return (int)(Arrays.stream(f).sum() % MOD);
    }
}

  • 时间复杂度:O(n×C)O(n\times C)O(n×C)
  • 空间复杂度:O(C)O(C)O(C)

C++

class Solution {
public:
    int distinctSubseqII(string s) {
        int MOD = (int)1e9+7;
        vector<long> f(26, 0);
        for (auto cur : s) {
            f[cur - 'a'] = accumulate(f.begin(), f.end(), 1l) % MOD;
        }
        return accumulate(f.begin(), f.end(), 0l) % MOD;
    }
};
  • 时间复杂度:O(n×C)O(n\times C)O(n×C)
  • 空间复杂度:O(C)O(C)O(C)

Rust

  • get了求和函数的奇妙调用【但没完全get】
impl Solution {
    pub fn distinct_subseq_ii(s: String) -> i32 {
        let MOD = 1000000007;
        let mut f = vec![0; 26];
        for cur in s.chars() {
            f[(cur as u8 - 'a' as u8) as usize] = f.iter().sum::<i64>() % MOD + 1;
        }
        (f.iter().sum::<i64>() % MOD) as i32

    }
}
  • 时间复杂度:O(n×C)O(n\times C)O(n×C)
  • 空间复杂度:O(C)O(C)O(C)

总结

  • 完全没思路的一道题~是那种望而生畏,读完题失去梦想,看完题解觉得自己是傻子的类型……
  • 看普通动规的题解感觉好难理解,差点放弃,然后跳到后面理清思路返回来就好理解很多,但还是只选了两种比较简洁的方式写;
  • 被一堆事情搅得乱七八糟的一天【周】,本来可以快乐写代码……
欢迎指正与讨论!