likes
comments
collection
share

【面试高频题】难度 3/5,状态压缩 DP 及其优化

作者站长头像
站长
· 阅读数 11

题目描述

这是 LeetCode 上的 526. 优美的排列 ,难度为 中等

Tag : 「位运算」、「状压 DP」、「动态规划」

假设有从 111NNN 的 NNN 个整数,如果从这 NNN 个数字中成功构造出一个数组,使得数组的第 iii 位 (1<=i<=N1 <= i <= N1<=i<=N) 满足如下两个条件中的一个,我们就称这个数组为一个优美的排列。

条件:

  • 第 iii 位的数字能被 iii 整除
  • iii 能被第 iii 位上的数字整除

现在给定一个整数 NNN,请问可以构造多少个优美的排列?

示例1:

输入: 2

输出: 2

解释: 
第 1 个优美的排列是 [1, 2]:
  第 1 个位置(i=1)上的数字是11能被 ii=1)整除
  第 2 个位置(i=2)上的数字是22能被 ii=2)整除

第 2 个优美的排列是 [2, 1]:
  第 1 个位置(i=1)上的数字是22能被 ii=1)整除
  第 2 个位置(i=2)上的数字是1ii=2)能被 1 整除

说明:

  • NNN 是一个正整数,并且不会超过 151515

状态压缩 DP

利用数据范围不超过 151515,我们可以使用「状态压缩 DP」进行求解。

使用一个二进制数表示当前哪些数已被选,哪些数未被选,目的是为了可以使用位运算进行加速。

我们可以通过一个具体的样例,来感受下「状态压缩」是什么意思:

例如 (000...0101)2(000...0101)_2(000...0101)2 代表值为 111 和值为 333 的数字已经被使用了,而值为 222 的节点尚未被使用。

然后再来看看使用「状态压缩」的话,一些基本的操作该如何进行:

假设变量 statestatestate 存放了「当前数的使用情况」,当我们需要检查值为 kkk 的数是否被使用时,可以使用位运算 a = (state >> k) & 1,来获取 statestatestate 中第 kkk 位的二进制表示,如果 a111 代表值为 kkk 的数字已被使用,如果为 000 则未被访问。

定义 f[i][state]f[i][state]f[i][state] 为考虑前 iii 个数,且当前选择方案为 statestatestate 的所有方案数量。

一个显然的初始化条件为 f[0][0]=1f[0][0] = 1f[0][0]=1,代表当我们不考虑任何数(i=0i = 0i=0)的情况下,一个数都不被选择(state=0state = 0state=0)为一种合法方案。

不失一般性的考虑 f[i][state]f[i][state]f[i][state] 该如何转移,由于本题是求方案数,我们的转移方程必须做到「不重不漏」。

我们可以通过枚举当前位置 iii 是选哪个数,假设位置 iii 所选数值为 kkk,首先 kkk 值需要同时满足如下两个条件:

  • statestatestate 中的第 kkk 位为 111
  • 要么 kkk 能被 iii 整除,要么 iii 能被 kkk 整除。

那么根据状态定义,位置 iii 选了数值 kkk,通过位运算我们可以直接得出决策位置 iii 之前的状态是什么:state&(¬(1<<(k−1)))state \& (\lnot (1 << (k - 1)))state&(¬(1<<(k1))),代表将 statestatestate 的二进制表示中的第 kkk 位置 000

最终的 f[i][state]f[i][state]f[i][state] 为当前位置 iii 选择的是所有合法的 kkk 值的方案数之和:

f[i][state]=∑k=1nf[i−1][state&(¬(1<<(k−1)))]f[i][state] = \sum_{k = 1}^{n} f[i - 1][state \& (\lnot (1 << (k - 1)))]f[i][state]=k=1nf[i1][state&(¬(1<<(k1)))]

一些细节:由于给定的数值范围为 [1,n][1,n][1,n],但实现上为了方便,我们使用 statestatestate 从右往左的第 000 位表示数值 111 选择情况,第 111 位表示数值 222 的选择情况 ... 即对选择数值 kkk 做一个 −1-11 的偏移。

代码:

class Solution {
    public int countArrangement(int n) {
        int mask = 1 << n;
        int[][] f = new int[n + 1][mask];
        f[0][0] = 1;
        for (int i = 1; i <= n; i++) {
            // 枚举所有的状态
            for (int state = 0; state < mask; state++) {
                // 枚举位置 i(最后一位)选的数值是 k
                for (int k = 1; k <= n; k++) {
                    // 首先 k 在 state 中必须是 1
                    if (((state >> (k - 1)) & 1) == 0) continue;
                    // 数值 k 和位置 i 之间满足任一整除关系
                    if (k % i != 0 && i % k != 0) continue;
                    // state & (~(1 << (k - 1))) 代表将 state 中数值 k 的位置置零
                    f[i][state] += f[i - 1][state & (~(1 << (k - 1)))];
                }
            }
        }
        return f[n][mask - 1];
    }
}
  • 时间复杂度:共有 n∗2nn * 2^nn2n 的状态需要被转移,每次转移复杂度为 O(n)O(n)O(n),整体复杂度为 O(n2∗2n)O(n^2 * 2^n)O(n22n)
  • 空间复杂度:O(n∗2n)O(n * 2^n)O(n2n)

状态压缩 DP(优化)

通过对朴素的状压 DP 的分析,我们发现,在决策第 iii 位的时候,理论上我们应该使用的数字数量也应该为 iii 个。

但这一点在朴素状压 DP 中并没有体现,这就导致了我们在决策第 iii 位的时候,仍然需要对所有的 statestatestate 进行计算检查(即使是那些二进制表示中 111 的出现次数不为 iii 个的状态)。

因此我们可以换个思路进行枚举(使用新的状态定义并优化转移方程)。

定义 f[state]f[state]f[state] 为当前选择数值情况为 statestatestate 时的所有方案的数量。

这样仍然有 f[0]=1f[0] = 1f[0]=1 的初始化条件,最终答案为 f[(1<<n)−1]f[(1 << n) - 1]f[(1<<n)1]

不失一般性考虑 f[state]f[state]f[state] 如何计算:

从当前状态 statestatestate 进行出发,检查 statestatestate 中的每一位 111 作为最后一个被选择的数值,这样仍然可以确保方案数「不重不漏」的被统计,同时由于我们「从小到大」对 statestatestate 进行枚举,因此计算 f[state]f[state]f[state] 所依赖的其他状态值必然都已经被计算完成。

同样的,我们仍然需要确保 statestatestate 中的那一位作为最后一个的 111 需要与所放的位置成整除关系。

因此我们需要一个计算 statestatestate111 的个数的方法,这里使用 lowbitlowbitlowbit 实现即可。

最终的 f[state]f[state]f[state] 为当前位置选择的是所有合法值的方案数之和:

f[state]=∑i=0nf[state&(¬(1<<i))]f[state] = \sum_{i = 0}^{n}f[state \& ( \lnot (1 << i))]f[state]=i=0nf[state&(¬(1<<i))]

代码:

class Solution {
    int getCnt(int x) {
        int ans = 0;
        while (x != 0) {
            x -= (x & -x); // lowbit
            ans++;
        }
        return ans;
    }
    public int countArrangement(int n) {
        int mask = 1 << n;
        int[] f = new int[mask];
        f[0] = 1;
        // 枚举所有的状态
        for (int state = 1; state < mask; state++) {
            // 计算 state 有多少个 1(也就是当前排序长度为多少)
            int cnt = getCnt(state);
            // 枚举最后一位数值为多少
            for (int i = 0; i < n; i++) {
                // 数值在 state 中必须是 1
                if (((state >> i) & 1) == 0) continue;
                // 数值(i + 1)和位置(cnt)之间满足任一整除关系
                if ((i + 1) % cnt != 0 && cnt % (i + 1) != 0) continue;
                // state & (~(1 << i)) 代表将 state 中所选数值的位置置零
                f[state] += f[state & (~(1 << i))];
            }
        }
        return f[mask - 1];
    }
}
  • 时间复杂度:共有 2n2^n2n 的状态需要被转移,每次转移复杂度为 O(n)O(n)O(n),整体复杂度为 O(n∗2n)O(n * 2^n)O(n2n)
  • 空间复杂度:O(2n)O(2^n)O(2n)

总结

不难发现,其实两种状态压缩 DP 的思路其实是完全一样的。

只不过在朴素状压 DP 中我们是显式的枚举了考虑每一种长度的情况(存在维度 iii),而在状压 DP(优化)中利用则 statestatestate 中的 111 的个数中蕴含的长度信息。

最后

这是我们「刷穿 LeetCode」系列文章的第 No.525 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。

在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。

为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour…

在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉