轻松拿下 TS 泛型
「这是我参与2022首次更文挑战的第18天,活动详情查看:2022首次更文挑战」。
前言
泛型,是 TS 最难理解的部分,拿下了泛型,TS 就没什么难的了。
这是本文的知识图谱:
你掌握了吗?没掌握就一起来查漏补缺吧。
学习本文之前,先要有 TS 基础,如果觉得阅读吃力,可以先学习这篇文章,通俗易懂的 TS 基础知识总结
为什么需要泛型?
如果你看过 TS 文档,一定看过这样两段话:
软件工程中,我们不仅要创建一致的定义良好的 API,同时也要考虑可重用性。 组件不仅能够支持当前的数据类型,同时也能支持未来的数据类型,这在创建大型系统时为你提供了十分灵活的功能。
在像 C# 和 Java 这样的语言中,可以使用泛型来创建可重用的组件,一个组件可以支持多种类型的数据。 这样用户就可以以自己的数据类型来使用组件。
简直说的就不是人话,你确定初学者看得懂?
我觉得初学者应该要先明白为什么需要泛型这个东西,它解决了什么问题?而不是看这种拗口的定义。
我们还是先来看这样一个例子,体会一下泛型解决的问题吧。
定义一个 print 函数,这个函数的功能是把传入的参数打印出来,再返回这个参数,传入参数的类型是 string,函数返回类型为 string。
function print(arg:string):string {
console.log(arg)
return arg
}
现在需求变了,我还需要打印 number 类型,怎么办?
可以使用联合类型来改造:
function print(arg:string | number):string | number {
console.log(arg)
return arg
}
现在需求又变了,我还需要打印 string 数组、number 数组,甚至任何类型,怎么办?
有个笨方法,支持多少类型就写多少联合类型。
或者把参数类型改成 any。
function print(arg:any):any {
console.log(arg)
return arg
}
且不说写 any 类型不好,毕竟在 TS 中尽量不要写 any。
而且这也不是我们想要的结果,只能说传入的值是 any 类型,输出的值是 any 类型,传入和返回并不是统一的。
这么写甚至还会出现bug
const res:string = print(123)
定义 string 类型来接收 print 函数的返回值,返回的是个 number 类型,TS 并不会报错提示我们。
这个时候,泛型就出现了,它可以轻松解决输入输出要一致的问题。
注意:泛型不是为了解决这一个问题设计出来的,泛型还解决了很多其他问题,这里是通过这个例子来引出泛型。
泛型基本使用
处理函数参数
我们使用泛型来解决上文的问题。
泛型的语法是 <>
里写类型参数,一般可以用 T
来表示。
function print<T>(arg:T):T {
console.log(arg)
return arg
}
这样,我们就做到了输入和输出的类型统一,且可以输入输出任何类型。
如果类型不统一,就会报错:
泛型中的 T 就像一个占位符、或者说一个变量,在使用的时候可以把定义的类型像参数一样传入,它可以原封不动地输出。
泛型的写法对前端工程师来说是有些古怪,比如
<>
T
,但记住就好,只要一看到<>
,就知道这是泛型。
我们在使用的时候可以有两种方式指定类型。
- 定义要使用的类型
- TS 类型推断,自动推导出类型
print<string>('hello') // 定义 T 为 string
print('hello') // TS 类型推断,自动推导类型为 string
我们知道,type 和 interface都可以定义函数类型,也用泛型来写一下,type 这么写:
type Print = <T>(arg: T) => T
const printFn:Print = function print(arg) {
console.log(arg)
return arg
}
interface 这么写:
interface Iprint<T> {
(arg: T): T
}
function print<T>(arg:T) {
console.log(arg)
return arg
}
const myPrint: Iprint<number> = print
默认参数
如果要给泛型加默认参数,可以这么写:
interface Iprint<T = number> {
(arg: T): T
}
function print<T>(arg:T) {
console.log(arg)
return arg
}
const myPrint: Iprint = print
这样默认就是 number 类型了,怎么样,是不是感觉 T
就如同函数参数一样呢?
处理多个函数参数
现在有这么一个函数,传入一个只有两项的元组,交换元组的第 0 项和第 1 项,返回这个元组。
function swap(tuple) {
return [tuple[1], tuple[0]]
}
这么写,我们就丧失了类型,用泛型来改造一下。
我们用 T 代表第 0 项的类型,用 U 代表第 1 项的类型。
function swap<T, U>(tuple: [T, U]): [U, T]{
return [tuple[1], tuple[0]]
}
这样就可以实现了元组第 0 项和第 1 项类型的控制。
传入的参数里,第 0 项为 string 类型,第 1 项为 number 类型。
在交换函数的返回值里,第 0 项为 number 类型,第 1 项为 string 类型。
第 0 项上全是 number 的方法。
第 1 项上全是 string 的方法。
函数副作用操作
泛型不仅可以很方便地约束函数的参数类型,还可以用在函数执行副作用操作的时候。
比如我们有一个通用的异步请求方法,想根据不同的 url 请求返回不同类型的数据。
function request(url:string) {
return fetch(url).then(res => res.json())
}
调一个获取用户信息的接口:
request('user/info').then(res =>{
console.log(res)
})
这时候的返回结果 res 就是一个 any 类型,非常讨厌。
我们希望调用 API 都清晰的知道返回类型是什么数据结构,就可以这么做:
interface UserInfo {
name: string
age: number
}
function request<T>(url:string): Promise<T> {
return fetch(url).then(res => res.json())
}
request<UserInfo>('user/info').then(res =>{
console.log(res)
})
这样就能很舒服地拿到接口返回的数据类型,开发效率大大提高:
约束泛型
假设现在有这么一个函数,打印传入参数的长度,我们这么写:
function printLength<T>(arg: T): T {
console.log(arg.length)
return arg
}
因为不确定 T 是否有 length 属性,会报错:
那么现在我想约束这个泛型,一定要有 length 属性,怎么办?
可以和 interface 结合,来约束类型。
interface ILength {
length: number
}
function printLength<T extends ILength>(arg: T): T {
console.log(arg.length)
return arg
}
这其中的关键就是 <T extends ILength>
,让这个泛型继承接口 ILength
,这样就能约束泛型。
我们定义的变量一定要有 length 属性,比如下面的 str、arr 和 obj,才可以通过 TS 编译。
const str = printLength('lin')
const arr = printLength([1,2,3])
const obj = printLength({ length: 10 })
这个例子也再次印证了 interface 的 duck typing
。
只要你有 length 属性,都符合约束,那就不管你是 str,arr 还是obj,都没问题。
当然,我们定义一个不包含 length 属性的变量,比如数字,就会报错:
泛型的一些应用
使用泛型,可以在定义函数、接口或类的时候,不预先指定具体类型,而是在使用的时候再指定类型。
泛型约束类
定义一个栈,有入栈和出栈两个方法,如果想入栈和出栈的元素类型统一,就可以这么写:
class Stack<T> {
private data: T[] = []
push(item:T) {
return this.data.push(item)
}
pop():T | undefined {
return this.data.pop()
}
}
在定义实例的时候写类型,比如,入栈和出栈都要是 number 类型,就这么写:
const s1 = new Stack<number>()
这样,入栈一个字符串就会报错:
这是非常灵活的,如果需求变了,入栈和出栈都要是 string 类型,在定义实例的时候改一下就好了:
const s1 = new Stack<string>()
这样,入栈一个数字就会报错:
特别注意的是,泛型无法约束类的静态成员。
给 pop 方法定义 static
关键字,就报错了
泛型约束接口
使用泛型,也可以对 interface 进行改造,让 interface 更灵活。
interface IKeyValue<T, U> {
key: T
value: U
}
const k1:IKeyValue<number, string> = { key: 18, value: 'lin'}
const k2:IKeyValue<string, number> = { key: 'lin', value: 18}
泛型定义数组
定义一个数组,我们之前是这么写的:
const arr: number[] = [1,2,3]
现在这么写也可以:
const arr: Array<number> = [1,2,3]
数组项写错类型,报错
实战,泛型约束后端接口参数类型
我们来看一个泛型非常有助于项目开发的用法,约束后端接口参数类型。
import axios from 'axios'
interface API {
'/book/detail': {
id: number,
},
'/book/comment': {
id: number
comment: string
}
...
}
function request<T extends keyof API>(url: T, obj: API[T]) {
return axios.post(url, obj)
}
request('/book/comment', {
id: 1,
comment: '非常棒!'
})
这样在调用接口的时候就会有提醒,比如:
路径写错了:
参数类型传错了:
参数传少了:
开发效率大大提高啊!可以早点和后端联调完,摸鱼去了。
小结
泛型
(Generics),从字面上理解,泛型就是一般的,广泛的。
泛型是指在定义函数、接口或类的时候,不预先指定具体类型,而是在使用的时候再指定类型。
泛型中的 T
就像一个占位符、或者说一个变量,在使用的时候可以把定义的类型像参数一样传入,它可以原封不动地输出。
泛型在成员之间提供有意义的约束,这些成员可以是:函数参数、函数返回值、类的实例成员、类的方法等。
用一张图来总结一下泛型的好处:
如果我的文章对你有帮助,你的赞👍就是对我的最大支持^_^
传送门:
转载自:https://juejin.cn/post/7064351631072526350