likes
comments
collection
share

高并发技巧-redis热key问题处理技巧

作者站长头像
站长
· 阅读数 39

这篇文章我将介绍工作中处理热key问题的常用手段,可能介绍的不是很全,毕竟不同的业务场景可能有不同的解决方案,但是相信通过这部分的介绍能提供一个热key问题的思路。

热key问题,简单来说就是对某一资源的访问量过高问题,再简单一点来说就是对某个资源访问的qps过高,而解决访问量高的问题通常我们使用分布式缓存,最常见的就是redis,这个资源对应redis的一个key简称热key。热key在开发中是非常常见的,比如各种app的榜单,活动页面上的一些资源。

虽然redis号称单节点能扛住10Wqps,但是开发中肯定不能这样去估计,毕竟安全第一,比如5000似乎就可能就可以作为上限。如果超过5000该怎么处理呢?下面将提供几种常见的解决方案。

冗余写/随机读

假设在做活动,活动总金额为amount,用户每次完成任务会得到一笔奖金,每天结算一次,在页面会展示剩余金额restAmount。我们将剩余金额存到redis中,{key: pool, value: restAmount}

由于每天统一结算,所以的qps不会很高,毕竟我们能自己控制流量,比如用户完成后发个延迟结算消息到mq,然后由消费者来处理计算剩余金额最后更新到redis中。

但是在页面的的qps是很高的。显然奖池pool就是个热key。

既然单节点扛不住,那么显然可以将数据写到N个节点上,也就是将奖池存到多个节点,在页面读取的时候随机选一个节点去读。假如有10W的qps,N=10,那么每个节点的流量就成了1W的qps。

高并发技巧-redis热key问题处理技巧

大key问题与分shard处理

上门介绍的奖池问题显然不是大key问题,工作中常见的大key问题通常涉及到批量用户存储在set或者map中。举个不恰当的例子(之所以说不恰当是因为大量数据判存完全可以使用布隆过滤器)。假如同时存在若干个活动,对于每个活动,如果用户完成了,需要记录下用户完成情况,在后续页面进行对应的完成情况展示。这里可以使用map来处理,{key:activityId, value:{field:userId, value:完成情况}}

那么这显然是一个大key问题,同时也是个热点问题。但是用上面介绍的办法能解决热key问题,解决不了大key问题。

解决这个问题其实也可以采用分而治之的思路,就是将大key拆分为若干小key,并且尽量让若干小key存在不同的redis节点中。

比如对于一个活动id我可以分为10个shard,{shard_1,...,shard_10},使用userId%10得到归属的shard。

这样每次判断取出用户完成情况,就先找到对应活动的shard然后拿出该用户即可。如果要拿出活动下的所有用户来做榜单,则只需要将所有shard都拿出来排序即可;

由于不同的shard在不同的redis节点,这样就又解决了热点问题。

高并发技巧-redis热key问题处理技巧

本地缓存

如果条件允许的话,也就是本地缓存够用,或者说数据量不是很大,同时能够接受一定的延迟的话,那么可以直接使用本地缓存。这里就以guava的LoadingCache为例。

以奖池的例子来说,数据量小的忽略不计,因为结算时同一结算并更新奖池,也就是说一天中23个多小时数据都不会变,变动的时间也很短,所以我们可以接受一定的延迟,只要记得讲本地缓存过期时间设置短一点,比如10分钟。

此外需要有个地方供过期后的本地缓存读取,可以使用db或者redis,这样每次更新数据的时候就得更新db或者redis。为了防止击穿,记得使用load-miss方法。

LoadingCache<String, String> cache = CacheBuilder.newBuilder()
                .maximumSize(1000L)
                .expireAfterAccess(Duration.ofSeconds(600L))
                .expireAfterWrite(Duration.ofSeconds(600L))
                .build(new CacheLoader<String, String>() {
                    @Override
                    public String load(String key) throws Exception {
                        // load from db
                    }
                });
String restAmount = cache.get("pool");

使用Memcached

这在公司基础架构用的会更多一点,为什么可以使用memcached,看下面两段话的介绍就知道了.

  1. Redis是单线程请求,所有命令串行执行,并发情况下不需要考虑数据一致性问题;性能受限于CPU,单实例QPS在4-6w。Memcached是多线程,可以利用多核优势,单实例在正常情况下,可以达到写入60-80w qps,读80-100w qps。

  2. Redis的big key与热key类操作,如果qps较高则容易造成redis阻塞,影响整体请求。Memcached因为是多线程,与redis相比,在big key与热key类操作上支持较好。

转载自:https://juejin.cn/post/7159809554674122759
评论
请登录